首页 >
平行六面体
✍ dations ◷ 2025-04-04 11:26:02 #平行六面体
在几何学中,平行六面体是由六个平行四边形所组成的三维立体,是一种平行多面体。它与平行四边形的关系,正如正方体与正方形之间的关系;在欧几里得几何中这四个概念都允许,但在仿射几何中只允许平行四边形和平行六面体。平行六面体的三个等价的定义为:长方体(六个面都是长方形)、正方体(六个面都是正方形),以及菱面体(六个面都是菱形)都是平行六面体的特殊情况。平行六面体是拟柱体的一个子类。平行六面体可由正方体经线性变换而成。用相同的平行六面体,可以镶嵌整个空间。平行六面体的体积是底面
A
{displaystyle A}
与高
h
{displaystyle h}
的乘积,即这里的高是底面与对面的垂直距离。另外一个方法是用向量
a
=
(
a
1
,
a
2
,
a
3
)
{displaystyle mathbf {a} =(a_{1},a_{2},a_{3})}
,
b
=
(
b
1
,
b
2
,
b
3
)
{displaystyle mathbf {b} =(b_{1},b_{2},b_{3})}
,以及
c
=
(
c
1
,
c
2
,
c
3
)
{displaystyle mathbf {c} =(c_{1},c_{2},c_{3})}
来表示相交于一点的三条棱。平行六面体的体积
V
{displaystyle V}
等于标量三重积:证明:以
b
{displaystyle mathbf {b} }
和
c
{displaystyle mathbf {c} }
来表示底面的边,则根据向量积的定义,底面的面积
A
{displaystyle A}
为:其中
θ
{displaystyle theta }
是
b
{displaystyle mathbf {b} }
与
c
{displaystyle mathbf {c} }
之间的角,而高为:其中
α
{displaystyle alpha }
是
a
{displaystyle mathbf {a} }
与
h
{displaystyle h}
之间的角。从图中我们可以看到,
α
{displaystyle alpha }
的大小限定为
0
∘
≤
α
<
90
∘
{displaystyle 0^{circ }leq alpha <90^{circ }}
。而向量
b
×
c
{displaystyle mathbf {b} times mathbf {c} }
与
a
{displaystyle mathbf {a} }
之间的角
β
{displaystyle beta }
则有可能大于90°(
0
∘
≤
β
<
180
∘
{displaystyle 0^{circ }leq beta <180^{circ }}
)。也就是说,由于
b
×
c
{displaystyle mathbf {b} times mathbf {c} }
与
h
{displaystyle h}
平行,
β
{displaystyle beta }
的值要么等于
α
{displaystyle alpha }
,要么等于
180
∘
−
α
{displaystyle 180^{circ }-alpha }
。因此:且我们得出结论:于是,根据标量积的定义,它等于
a
⋅
(
b
×
c
)
{displaystyle mathbf {a} cdot (mathbf {b} times mathbf {c} )}
的绝对值,即:证毕。最后一个表达式也可以写成以下行列式的绝对值:若
a
{displaystyle a}
、
b
{displaystyle b}
及
c
{displaystyle c}
是三条两两相邻的棱长,且
α
{displaystyle alpha }
、
β
{displaystyle beta }
及
γ
{displaystyle gamma }
是三条棱边的夹角,则平行六面体的体积为:证明从上面可知,平行六面体的体积可表示为:其中:因此依行列式及标量积定义展开公式右手边,即可得上述公式。选取任意一顶点
(
x
1
,
y
1
,
z
1
)
{displaystyle (x_{1},y_{1},z_{1})}
以其相邻三个顶点
(
x
2
,
y
2
,
z
2
)
{displaystyle (x_{2},y_{2},z_{2})}
、
(
x
3
,
y
3
,
z
3
)
{displaystyle (x_{3},y_{3},z_{3})}
及
(
x
4
,
y
4
,
z
4
)
{displaystyle (x_{4},y_{4},z_{4})}
,则体积可表示为:如果平行六面体具有对称平面,则一定是以下两种情况之一:长方体是六个面都是长方形的平行六面体;正方体是六个面都是正方形的平行六面体。菱面体是六个面都是菱形的平行六面体;三方偏方面体是所有菱形面都全等的菱面体。完美平行六面体指棱长、面对角线和体对角线都是整数的平行六面体。在2009年,发现了数十个完美平行六面体的例子,包括棱长271、106及103,劣面对角线长101、 266及255,优面角线长183、 312及323,以及体对角线长374、 300、 278及272的平行六面体。平行六面体在高维空间的推广称为超平行体。特别地,n维空间中的超平行体称为n维超平行体。因此,平行四边形就是2维超平行体,平行六面体就是3维超平行体。n维超平行体的所有对角线相交于一点,并被这个点所平分。位于
R
m
{displaystyle mathbb {R} ^{m}}
空间中的n维超平行体的n维体积(
m
≥
n
{displaystyle mgeq n}
),可以用格拉姆行列式的方法来计算。
相关
- 充血性心力衰竭心脏衰竭(法语:Insuffisance cardiaque,英语:HF, heart failure),一般意指慢性心脏衰竭(英语:CHF, chronic heart failure)。但是有时则指郁血性心力衰竭(congestive heart failure),当
- 干燥性综合征干燥综合征,又名修格连氏综合征,或者舍格伦综合征。该病的英文名称为Sjögren's syndrome(发音为/ˈʃoʊɡrənz/,又称为Mikulicz disease及Sicca syndrome,是一种长期的自身免
- 总统议长:南希·裴洛西(民主党) 多数党领袖(英语:Party leaders of the United States House of Representatives):斯坦利·霍耶(民主党) 少数党领袖(英语:Party leaders of the United Sta
- 中美中美(英语:Middle America,法语:L'Amérique moyen)是一个政治地理学中的地理名词,它表示的是美洲的中部地区。它位于北美洲的南半部分,包括墨西哥、中美洲和加勒比地区三部分。按
- 椰子椰(学名:Cocos nucifera)是棕榈科椰属的唯一种大型植物,椰子是椰树的果实,是一种在热带地区很普及的果实。椰子树的普及也在于其果实椰子可以在海中随风浪漂流上千公里后落地生根
- 生物技术学生物技术(英语:biotechnology),又称为生物科技,指利用生物体(含动物,植物及微生物的细胞)来生产有用的物质或改进制程,改良生物的特性,以降低成本及创新物种的科学技术。根据不同的工
- 亚油酸亚油酸(Linoleic acid,LA),又称亚麻油酸,IUPAC名:(9Z,12Z)-9,12-十八碳二烯酸,速记法名称为 18:2, n-6,是一种含有两个双键的ω-6脂肪酸。存在于动植物油中,红花油中约含75%,向日葵籽油
- 非洲中央银行及货币列表此为非洲各国中央银行及货币列表。其中西非国家中央银行 (BCEAO) 和中部非洲国家银行 (BEAC)是非洲的两个货币联盟。二者的成员国都使用非洲法郎作为法定货币。IMF数据库
- 礼萨呼罗珊礼萨呼罗珊省(波斯语:استان خراسان رضوی)是伊朗三十一个省份之一。面积144,681公里,在所有省份中排行第3。人口约5,202,770(2005年数据);首府位于马什哈德市。礼
- 桃园国际机场公司航空科学馆坐标:25°04′14″N 121°13′25″E / 25.070671°N 121.223627°E / 25.070671; 121.223627桃园国际机场股份有限公司航空科学馆,是台湾桃园市大园区的航空博物馆,简称桃园国