平行六面体

✍ dations ◷ 2025-09-05 00:12:34 #平行六面体
在几何学中,平行六面体是由六个平行四边形所组成的三维立体,是一种平行多面体。它与平行四边形的关系,正如正方体与正方形之间的关系;在欧几里得几何中这四个概念都允许,但在仿射几何中只允许平行四边形和平行六面体。平行六面体的三个等价的定义为:长方体(六个面都是长方形)、正方体(六个面都是正方形),以及菱面体(六个面都是菱形)都是平行六面体的特殊情况。平行六面体是拟柱体的一个子类。平行六面体可由正方体经线性变换而成。用相同的平行六面体,可以镶嵌整个空间。平行六面体的体积是底面 A {displaystyle A} 与高 h {displaystyle h} 的乘积,即这里的高是底面与对面的垂直距离。另外一个方法是用向量 a = ( a 1 , a 2 , a 3 ) {displaystyle mathbf {a} =(a_{1},a_{2},a_{3})} , b = ( b 1 , b 2 , b 3 ) {displaystyle mathbf {b} =(b_{1},b_{2},b_{3})} ,以及 c = ( c 1 , c 2 , c 3 ) {displaystyle mathbf {c} =(c_{1},c_{2},c_{3})} 来表示相交于一点的三条棱。平行六面体的体积 V {displaystyle V} 等于标量三重积:证明:以 b {displaystyle mathbf {b} } 和 c {displaystyle mathbf {c} } 来表示底面的边,则根据向量积的定义,底面的面积 A {displaystyle A} 为:其中 θ {displaystyle theta } 是 b {displaystyle mathbf {b} } 与 c {displaystyle mathbf {c} } 之间的角,而高为:其中 α {displaystyle alpha } 是 a {displaystyle mathbf {a} } 与 h {displaystyle h} 之间的角。从图中我们可以看到, α {displaystyle alpha } 的大小限定为 0 ∘ ≤ α < 90 ∘ {displaystyle 0^{circ }leq alpha <90^{circ }} 。而向量 b × c {displaystyle mathbf {b} times mathbf {c} } 与 a {displaystyle mathbf {a} } 之间的角 β {displaystyle beta } 则有可能大于90°( 0 ∘ ≤ β < 180 ∘ {displaystyle 0^{circ }leq beta <180^{circ }} )。也就是说,由于 b × c {displaystyle mathbf {b} times mathbf {c} } 与 h {displaystyle h} 平行, β {displaystyle beta } 的值要么等于 α {displaystyle alpha } ,要么等于 180 ∘ − α {displaystyle 180^{circ }-alpha } 。因此:且我们得出结论:于是,根据标量积的定义,它等于 a ⋅ ( b × c ) {displaystyle mathbf {a} cdot (mathbf {b} times mathbf {c} )} 的绝对值,即:证毕。最后一个表达式也可以写成以下行列式的绝对值:若 a {displaystyle a} 、 b {displaystyle b} 及 c {displaystyle c} 是三条两两相邻的棱长,且 α {displaystyle alpha } 、 β {displaystyle beta } 及 γ {displaystyle gamma } 是三条棱边的夹角,则平行六面体的体积为:证明从上面可知,平行六面体的体积可表示为:其中:因此依行列式及标量积定义展开公式右手边,即可得上述公式。选取任意一顶点 ( x 1 , y 1 , z 1 ) {displaystyle (x_{1},y_{1},z_{1})} 以其相邻三个顶点 ( x 2 , y 2 , z 2 ) {displaystyle (x_{2},y_{2},z_{2})} 、 ( x 3 , y 3 , z 3 ) {displaystyle (x_{3},y_{3},z_{3})} 及 ( x 4 , y 4 , z 4 ) {displaystyle (x_{4},y_{4},z_{4})} ,则体积可表示为:如果平行六面体具有对称平面,则一定是以下两种情况之一:长方体是六个面都是长方形的平行六面体;正方体是六个面都是正方形的平行六面体。菱面体是六个面都是菱形的平行六面体;三方偏方面体是所有菱形面都全等的菱面体。完美平行六面体指棱长、面对角线和体对角线都是整数的平行六面体。在2009年,发现了数十个完美平行六面体的例子,包括棱长271、106及103,劣面对角线长101、 266及255,优面角线长183、 312及323,以及体对角线长374、 300、 278及272的平行六面体。平行六面体在高维空间的推广称为超平行体。特别地,n维空间中的超平行体称为n维超平行体。因此,平行四边形就是2维超平行体,平行六面体就是3维超平行体。n维超平行体的所有对角线相交于一点,并被这个点所平分。位于 R m {displaystyle mathbb {R} ^{m}} 空间中的n维超平行体的n维体积( m ≥ n {displaystyle mgeq n} ),可以用格拉姆行列式的方法来计算。

相关

  • 兼性厌氧生物兼性厌氧菌是一类既可以进行有氧呼吸,也能够进行无氧呼吸或发酵的微生物。在氧气充足时,它们会通过有氧呼吸来产生ATP(三磷酸腺苷),但当氧气缺乏时,它们的呼吸方式就会变为无氧呼
  • 癌症疫苗癌症疫苗(英语:cancer vaccine)可以用来治疗或预防癌症,那些用来治疗已存在的癌症又被称作治疗性癌症疫苗。有些或很多疫苗是“自体”的,也就是说,它是从病人自己的身体中萃取的,所
  • 环境影响评价环境影响评价简称环评(EIA,Environmental Impact Assessment),是一项对工程项目等所可能造成的环境影响的评估制度,旨在减少项目开发导致的污染、维护人类健康与生态平衡。目前在
  • 弗里德利布·费迪南德·龙格弗里德利布·费迪南德·龙格(德语:Friedlieb Ferdinand Runge,1794年2月8日-1867年3月25日),德国分析化学家。1819年在歌德的鼓励下,首次提炼了咖啡因。他也确认了颠茄提取物的瞳孔
  • 分离定律基因的分离定律(英语:mendelian inheritance)是遗传学的三大定律之一(另外两个是基因的自由组合定律和基因的连锁交换定律)。它由奥地利遗传学家孟德尔(G.J.Mendel, 1822~1884)经
  • 303年
  • 卜辞卜辞或《卜辞》指中国商朝晚期巫师进行占卜活动而刻在牛胛骨、龟甲等兽骨甲壳上的文字记载,亦指近现代学者整理晚商的甲骨文字而汇编的纂集。卜辞中的甲骨文与现代汉字相差甚
  • 格雷丝·柯立芝格雷丝·安娜·古德休·柯立芝(Grace Anna Goodhue Coolidge,1879年1月3日-1957年7月8日),美国第30任总统卡尔文·柯立芝的妻子,美国前第一夫人(1923年-1929年)。
  • 汉中话汉中话,即通行于今陕西省汉中市境内的大部分地区的汉中方言。在汉语方言研究上,一般认为归属于西南官话中的成渝片(2010版称为川黔片),亦有个别分支属中原官话关中片。汉中地处陕
  • 非洲野猪属非洲野猪属(学名:Potamochoerus),是偶蹄目猪科的一属,分布于撒哈拉以南非洲,包括2种: