首页 >
卢瑟福散射实验
✍ dations ◷ 2025-04-04 18:51:50 #卢瑟福散射实验
在原子物理学里,卢瑟福散射(英语:Rutherford scattering)指的是带电粒子因为库仑相对作用而进行的一种弹性散射(英语:elastic scattering)。这种散射实验是由欧内斯特·卢瑟福领队设计与研究,成功地于 1909 年证实在原子的中心有个原子核,也导致卢瑟福模型的创立,及后来玻尔模型的提出。应用卢瑟福散射的技术与理论,卢瑟福背散射(Rutherford backscattering)是一种专门分析材料的技术。卢瑟福散射有时也被称为库仑散射,因为它涉及的位势乃库仑位势。深度非弹性散射(deep inelastic scattering)也是一种类似的散射,在 60 年代,常用来探测原子核的内部。α粒子散射的实验完成于1909年。在那时代,原子被认为类比于梅子布丁(物理学家约瑟夫·汤姆孙提出的),负电荷(梅子)分散于正电荷的圆球(布丁)。假若这梅子布丁模型是正确的,由于正电荷完全散开,而不是集中于一个原子核,库仑位势的变化不会很大,通过这位势的阿尔法粒子,其移动方向应该只会有小角度偏差。:51-53在卢瑟福的指导下,汉斯·盖革和欧内斯特·马斯登发射α粒子射束来轰击只有几个原子厚度的薄白金箔纸。然而,他们得到的实验结果非常诡异,大约每8000个阿尔法粒子,就有一个粒子的移动方向会有很大角度的偏差(甚至超过 90°);而其它粒子都直直地通过白金箔纸,偏差几乎在2°到3°以内,甚至几乎没有偏差。从这结果,卢瑟福断定,大多数的质量和正电荷,都集中于一个很小的区域(这个区域后来被称作“原子核”);电子则包围在区域的外面。当一个(正价)α粒子移动到非常接近原子核,它会被很强烈的排斥,以大角度反弹。原子核的小尺寸解释了为什么只有极少数的α粒子被这样排斥。:51-53卢瑟福对这奇异的结果感到非常惊异。他后来常说:“这是我一生中最难以置信的事件…如同你用15吋巨炮朝着一张卫生纸射击,而炮弹却被反弹回来而打到你自己一般地难以置信。”:51-53卢瑟福计算出原子核的尺寸应该小于
10
−
14
m
{displaystyle 10^{-14}m,!}
。至于其具体的数值,卢瑟福无法从这实验决定出来。关于这一部分,请参阅后面的“原子核最大尺寸”一节。卢瑟福计算出来的微分截面是其中,
σ
{displaystyle sigma ,!}
是截面,
Ω
{displaystyle Omega ,!}
是立体角,
q
{displaystyle q,!}
是阿尔法粒子的电荷量,
Q
{displaystyle Q,!}
是散射体的电荷量,
ϵ
0
{displaystyle epsilon _{0},!}
是真空电容率,
E
{displaystyle E,!}
是能量,
θ
{displaystyle theta ,!}
是散射角度。假设阿尔法粒子正面碰撞于原子核。阿尔法粒子所有的动能(
m
v
0
2
/
2
{displaystyle mv_{0}^{2}/2,!}
),在碰撞点,都被转换为势能。在那一刹那,阿尔法粒子暂时是停止的。从阿尔法粒子到原子核中心的距离
b
{displaystyle b,!}
是原子核最大尺寸。应用库仑定律,其中,
m
{displaystyle m,!}
是质量,
v
0
{displaystyle v_{0},!}
是初始速度。重新编排,阿尔法粒子的质量是
m
=
6.7
×
10
−
27
k
g
{displaystyle m=6.7times 10^{-27} kg,!}
,电荷量是
q
=
2
×
(
1.6
×
10
−
19
)
C
{displaystyle q=2times (1.6times 10^{-19}) C,!}
,初始速度是
v
0
=
2
×
10
7
m
/
s
{displaystyle v_{0}=2times 10^{7} m/s,!}
,金的电荷量是
Q
=
79
×
(
1.6
×
10
−
19
)
C
{displaystyle Q=79times (1.6times 10^{-19}) C,!}
。将这些数值代入方程,可以得到撞击参数
b
=
2.7
×
10
−
14
m
{displaystyle b=2.7times 10^{-14} m,!}
(真实半径是
7.3
×
10
−
15
m
{displaystyle 7.3times 10^{-15} m,!}
)。这些实验无法得到真实半径,因为阿尔法粒子没有足够的能量撞入
27
f
m
{displaystyle 27 fm,!}
半径内。卢瑟福知道这问题。他也知道,假若阿尔法粒子真能撞至
7.3
f
m
{displaystyle 7.3 fm,!}
半径,直接地击中金原子核,那么,在高撞击角度(最小撞击参数
b
{displaystyle b,!}
),由于位势不再是库仑位势,实验得到的散射曲线的样子会从双曲线改变为别种曲线。卢瑟福没有观察到别种曲线,显示出金原子核并没有被击中。所以,卢瑟福只能确定金原子核的半径小于
27
f
m
{displaystyle 27 fm,!}
。1919 年,在卢瑟福实验室进行的另一个非常类似的实验,物理学家发射阿尔法粒子于氢原子核,观察到散射曲线显著地偏离双曲线,意示位势不再是库仑位势。从实验数据,物理学家得到撞击参数或最近离距(closest approach)大约为
3.5
f
m
{displaystyle 3.5 fm,!}
。更进一步的研究,在卢瑟福实验室,发射阿尔法粒子于氮原子核和氧原子核,得到的结果,使得詹姆斯·查德威克和工作同仁确信,原子核内的作用力不同于库仑斥力。现今,应用这些年累积的散射原理与技术,卢瑟福背散射谱学能够侦侧半导体内的重金属杂质。实际上,这技术也是第一个在月球使用的实地分析技术。在勘察者任务(surveyor mission)降落于月球表面后,卢瑟福背散射谱学实验被用来收集地质资料。
相关
- 心律调节器心脏起搏器(英语:Pacemaker、Artificial pacemaker),又称心脏节律器,心脏起搏器,是一种医疗器材,使用电击对于心脏的肌肉做持续与规律的刺激,以维持心脏的持续跳动。1932年,美国的生
- 系膜细胞肾小球内系膜细胞(Intraglomerular mesangial cells)是位于肾的肾小体内间的肾小球微血管的特别周皮细胞(pericyte/周细胞)。系膜细胞是单核细胞或平滑肌的来源,典型地覆盖30%的
- 丁烷丁烷,又称正丁烷,是一种有机化合物,分子式为C4H10,结构式为CH3CH2CH2CH3。丁烷在常温常压下是一种无色、易液化、易燃的气体。它最早由英国化学家爱德华·弗兰克兰德(英语:Edward
- 三叉神经三叉神经(Trigeminal nerve)为混合神经,也就是既含有运动神经又含有感觉神经。感觉部分收集来自面部和头部的信息,运动部分则控制咀嚼肌。三叉神经是面部最粗大的神经,它的运动部
- 热痉挛热痉挛(英语:Heat cramps)是因为身体运动后流失大量的盐分和水分造成的肌肉的抽筋或痉挛。热痉挛常会发生于腹部、手臂以及小腿。发生的原因可能是没有摄取足够的液体或电解质
- 核合成核合成是从已经存在的核子(质子和中子)创造出新原子核的过程。原始的核子来自大爆炸之后已经冷却至一千万度以下,由夸克胶子形成的等离子体海洋。在之后的几分钟内,只有质子和中
- 真灵长大目真灵长大目(Euarchonta)是灵长总目的一个演化支,包含了树鼩目、皮翼目、灵长目及史前的更猴目。灵长动物又译为真统兽大目(“Euarchonta”意为“真正的始祖或先驱”),这个分类是于
- 奥列格奥列格(俄语:Олег Вещий;?-912年)古罗斯王公。他是诺夫哥罗德的第二位大公(约879年起);有时他也被看作基辅的第一位大公。奥列格为瓦良格人(维京人的一支)。按照某些学者的意
- 兰尼单抗兰尼单抗(英语:Ranibizumab,也译为雷珠单抗,商品名Lucentis)是一种单克隆抗体片段(FAB),其与贝伐单抗(bevacizumab)是从相同亲本鼠抗体获得。它比母体分子小得多,能更紧密的结合到血管
- 耳蜗植入法人工耳蜗,亦称为“人工电子耳”,是一种植入式听觉辅助设备,其功能是使重度失聪的病人(聋人)产生一定的声音知觉。与助听器等其它类型的听觉辅助设备不同,人工耳蜗的工作原理不是放