滤波问题

✍ dations ◷ 2025-12-07 18:05:26 #控制理论

在随机过程理论中的滤波问题(Filtering problem)是指针对信号处理及相关领域中,许多状态估测问题的数学模型。大致概念是从不完整的、可能包括噪声的观测值中,建立有关系统真实值的“最佳估测”。最佳非线性滤波问题(甚至也包括非平稳过程问题)由Ruslan L. Stratonovich(英语:Ruslan L. Stratonovich)(1959年、1960年)找到解答,在Harold J. Kushner(英语:Harold J. Kushner)的研究及Moshe Zakai(英语:Moshe Zakai)的研究中也有提到,Zakai建立了滤波器在条件几率未归一情况下的简化动态模型,称为Zakai方程(英语:Zakai equation)。不过一般情形下的解是无限维的。

目前已针对一些近似以及一些特定条件有深入的研究。例如在高斯随机变数的假设下,最佳解是线性滤波器,也称为维纳滤波及卡尔曼滤波。更一般的情形下,其解为无限维度,为了在有限内存的电脑中计算,需要进行有限维度的近似,有限维的近似型非线性滤波器(英语:nonlinear filter)比较会以启发为基础,例如扩展型卡尔曼滤波器(英语:Extended Kalman Filter)或是假定密度滤波器(Assumed Density Filters),也有更方法论导向的作法,例如Projection Filters,其中有些子系列恰好和假定密度滤波器相同。

一般来说,若可以适用分离原理,这些滤波器也可以成为最优控制问题解的一部分。例如在LQG控制最佳控制问题中,其估测部分的解就是卡尔曼滤波。

考虑概率空间 (Ω, Σ, P),并且假设在维度欧几里得空间 R的系统,其在时间的(随机)状态为随机变量  : Ω → R,可以由以下形式伊藤清随机微分方程的解来求得

其中是标准维布朗运动, : ,也就是说

因此

这个基本结果是滤波理论中,广义Fujisaki-Kallianpur-Kunita方程的基础。

相关

  • 刘新垣刘新垣(1927年11月7日-)是一位中国分子生物学家。1927年生于湖南衡东。l952年南开大学化学系毕业后在河北医学院任教,l963年中国科学院上海生物化学研究所副博士研究生班毕业,留
  • 谢伯让谢伯让(Hsieh, Po-Jang Brown),台湾认知神经科学、脑科学家,国立台湾大学生命科学系学士、国立中正大学哲学研究所硕士、美国达特茅斯学院心理与脑科学系博士。曾任麻省理工学院
  • 大屠杀列车纳粹集中营转移营比利时:布伦东克堡垒 · 梅赫伦转移营法国:居尔集中营 · 德朗西集中营意大利:波尔查诺转移营荷兰:阿默斯福特集中营 · 韦斯特博克转移营挪威:法斯塔德集中营部
  • 连任限制全球各国和地区掌握最高行政权力的政府首脑、国家元首或虚位元首等职务连任限制情况列表如下:古巴
  • 女性副国家元首这是关于女性担任选举或者任命的副国家元首的列表。本文不包括同时担任副政府首脑的副国家元首,比如副总统。
  • 广告设计广告设计(Advertisement Design)是以加强销售为目的所做的设计,也就是奠基在广告学与设计上面,来替产品,品牌,活动等做广告。最早的广告设计应该是早期报纸的小小布告栏,也就是以平
  • 德布灵德布灵(Döbling德语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gent
  • 第三次江陈会谈第三次陈江会谈,大陆称作“第三次陈江会谈”、台湾称作“第三次江陈会谈”,是于2009年4月在南京举行的两岸协商谈判。由海峡交流基金会董事长江丙坤率领代表团前往南京,与海峡
  • 菲力猫菲力猫(英语:Felix the Cat)是默片时代的一个卡通角色,片中它是一只拟人化的黑猫,遭遇了种种超现实的境况。菲力猫是电影史上最为人熟知的卡通角色之一,它是首个在电影市场获得票
  • 德尔福汽车德尔福汽车公开有限公司(Delphi Automotive PLC)是一家世界上最大的汽车零部件制造公司之一。总部位于英国肯特郡格林汉姆。雇员约161,000人。在全球32个国家设有126家独资制