爱因斯坦模型

✍ dations ◷ 2025-10-21 20:21:02 #爱因斯坦模型
爱因斯坦模型是一种固体模型,基于三种假设::131-132第一个假设是相当准确的,而第二个假设则不是。如果原子真的不互相作用,那么声波就不会在固体内传播。原先的理论是由爱因斯坦在1907年提出的,具有很大的历史相关性。由杜隆-珀蒂定律所预言的固体的热容已经知道是与经典力学一致的。然而,低温下的实验观察表明,热容在绝对零度时趋于零,在高温时单调增加到杜隆-珀蒂定律的预言。利用普朗克的量子化假设,爱因斯坦第一次能够预言所观察到的实验趋势。与光电效应在一起,这成为需要量子化的最重要的证据之一(值得注意的是,爱因斯坦是在现代量子力学的出现的许多年之前解决了量子谐振子问题)。尽管它成功了,但是爱因斯坦却错误预言为指数趋近于零,而正确的表现则是遵守 T 3 {displaystyle T^{3}} 幂定律。这个缺陷后来由德拜模型在1912年纠正。:389ff恒定体积V的物体的热容,通过内能U定义为:T {displaystyle T} 是系统的温度,可以从熵求出:为了求出熵,考虑由 N {displaystyle N} 个原子所组成的固体,每一个原子都有3个自由度。因此,总共有 3 N {displaystyle 3N} 个量子谐振子(以下称SHO)。SHO的可能的能量为:或者说,能级是均匀分隔的,我们可以定义能量的量子:它是SHO的能量可以增长的最小的,也是唯一的数量。接着,我们必须计算系统的多重性。也就是说,计算有多少种方法把 q {displaystyle q} 个能量量子分布在 N ′ {displaystyle N^{prime }} 个SHO。我们可以想象把 q {displaystyle q} 个石头分布在 N ′ {displaystyle N^{prime }} 个盒子中:或把一堆石头分成 N ′ − 1 {displaystyle N^{prime }-1} 份:或把 q {displaystyle q} 个石头和 N ′ − 1 {displaystyle N^{prime }-1} 个划分排成一行:最后一个图最能说明问题。把 n {displaystyle n}  样东西排成一行,有 n ! {displaystyle n!} 种方法。因此,把 q {displaystyle q} 个石头和 N ′ − 1 {displaystyle N^{prime }-1} 个划分排成一行的方法有 ( q + N ′ − 1 ) ! {displaystyle left(q+N^{prime }-1right)!} 种,然而,如果把第2个划分和第5个划分互换位置,是没有任何不同的。相同的理由对量子也成立。为了得出可能的不可区分的排列方法,我们必须把排列的总数除以不可区分的排列的数目。一共有 q ! {displaystyle q!} 种相同的量子排列,以及 ( N ′ − 1 ) ! {displaystyle (N^{prime }-1)!} 种相同的划分排列。因此,系统的多重性为:正如上面所提及的,这就是把 q {displaystyle q} 个能量量子放在 N ′ − 1 {displaystyle N^{prime }-1} 个谐振子中的方法数目。系统的熵具有下列形式:N ′ {displaystyle N^{prime }} 是一个很大的数,把它减去一总体上没有任何影响:利用斯特灵公式的帮助,熵可以简化:固体的总能量为:我们现在来计算温度:把这个公式两边取倒数,以求出U:两边关于温度求导,以求出 C V {displaystyle C_{V}} :或虽然固体的爱因斯坦模型准确预言高温时的热容,在低温时与实验值仍有明显的差距。关于低温时准确的热容计算,参见德拜模型。热容可以通过利用SHO的正则配分函数来获得。其中把该式代入配分函数的公式,得:这是一个SHO的配分函数。因为,统计上来说,固体的热容、能量,以及熵,都是在它的原子(SHO)中均匀分布的,因此我们可以利用这个配分函数来获得这些物理量,然后直接把它们乘以 N ′ {displaystyle N^{prime }} 以得出总量。接着,我们来计算每一个谐振子的平均能量:其中因此:于是,一个谐振子的热容为:整个固体的热容由 C V = 3 N C V {displaystyle C_{V}=3NC_{V}} 给出:它与前面推导的公式是相等的。物理量 T E = ε / k {displaystyle T_{E}=varepsilon /k} 的量纲是温度,是晶体的一个特有的性质。它称为“爱因斯坦温度”。因此,爱因斯坦晶体模型预言晶体的能量和热容是无量纲比率 T / T E {displaystyle T/T_{E}} 的通用函数。类似地,德拜模型预言了比率 T / T D {displaystyle T/T_{D}} 的通用函数。

相关

  • 虚词虚词,也称功能词(Function word),与实词相对,指的是汉语词汇中没有实际意义的词,同时虚词也无法独立成句。一般包含副词、介词、连接词、助词、叹词等。虚词一般包含副词、介词、
  • 系统分类学系统分类学(英语:systematics)是研究物种的演化历史,以及他与其它物种间的关系的学科。关系被可视化为进化树(别名:进化树,系统发生树,系统发育)。系统发育有两个组成部分,分支顺序(显
  • 阿纳帕阿纳帕(俄语:Ана́па)是俄罗斯克拉斯诺达尔边疆区的一个城市,是黑海沿岸的渡假胜地。2002年人口53,493人。阿纳帕交通设施有阿纳帕机场、火车站,一座小吨数轮船停靠之国际海
  • 吸虫见内文吸虫(学名:Trematoda)是寄生虫的一种,为扁形动物门吸虫纲动物的总称,也称为瓜仁虫。一些吸虫也被称为二口虫(拉丁语:Distoma)。其名由来是因为它的口吸盘和腹吸盘都被认为是口
  • 纳米医学纳米医学是随着纳米生物医药发展起来用纳米技术解决医学问题的学科。纳米技术和材料的发展将将给医学领域带来一场深刻的革命,主要在对付癌症和治疗心血管疾病方面有重要意义
  • 栖位生态位(Ecological niche),又称小生境、生态区位、生态栖位或是生态龛位,生态位是一个物种所处的环境以及其本身生活习性的总称。每个物种都有自己独特的生态位,借以跟其他物种作
  • 意大利金皮庸意大利坎皮奥内(意大利语:Campione d'Italia)是一个座落于卢加诺湖湖畔的意大利城镇,行政上属伦巴第科莫省的一部分。然而,坎皮奥内与意大利本土并没有直接接壤,其全境皆为瑞士提
  • 野兽派野兽派(法语:Les Fauves)是20世纪率先崛起的象征主义画派,画风强烈、用色大胆鲜艳,将印象派的色彩理论与梵高、高更等后印象派的大胆涂色技法推向极致,不再讲究透视和明暗、放弃传
  • 上维埃纳省上维埃纳省(法文:Haute-Vienne)是法国新阿基坦大区所辖的省份。该省编号为87。5个海外省及大区
  • 水貂见内文。鼬属(学名 Mustela),是哺乳纲食肉目鼬科的一属,共有17个种:美洲水鼬(Neovison vison)和已绝种的海鼬(Neovison macrodon)在1999年已从鼬属归类到美洲水鼬属(Neovison)。