首页 >
学生t检验
✍ dations ◷ 2025-01-23 09:16:06 #学生t检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例,
Z
=
X
¯
/
(
σ
/
n
)
{displaystyle Z={bar {X}}/(sigma /{sqrt {n}})}
,其中
X
¯
{displaystyle {bar {X}}}
为样本平均数,
n
{displaystyle n}
为样本数,
σ
{displaystyle sigma }
为总体标准差。至于k在单样本t检验中为
σ
^
/
σ
{displaystyle {hat {sigma }}/sigma }
,其中
σ
^
{displaystyle {hat {sigma }}}
为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
=
∑
i
=
1
n
x
i
n
{displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}}
为样本平均数,
s
=
∑
i
=
1
n
(
x
i
−
x
¯
)
2
n
−
1
{displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}}
为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
d
¯
=
∑
i
=
1
n
d
i
n
{displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}}
为配对样本差值之平均数,
s
d
=
∑
i
=
1
n
(
d
i
−
d
¯
)
2
n
−
1
{displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}}
为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
{displaystyle i=1ldots n}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
i
=
1
n
(
x
2
i
−
x
¯
2
)
2
)
/
(
2
n
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)}
为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
x
1
i
)
/
n
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n}
及
x
¯
2
=
(
∑
i
=
1
n
x
2
i
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n}
为二群样本各自的平均数,
s
p
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
+
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
1
+
n
2
−
2
)
{displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)}
为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中
i
=
1
…
n
1
{displaystyle i=1ldots n_{1}}
,其中
j
=
1
…
n
2
{displaystyle j=1ldots n_{2}}
,
x
¯
1
=
(
∑
i
=
1
n
1
x
1
i
)
/
n
1
{displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}}
及
x
¯
2
=
(
∑
j
=
1
n
2
x
2
j
)
/
n
{displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n}
为二群样本各自的平均数,
s
1
2
=
(
∑
i
=
1
n
(
x
1
i
−
x
¯
1
)
2
)
/
(
n
1
−
1
)
{displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)}
及
s
2
2
=
(
∑
j
=
1
n
(
x
2
j
−
x
¯
2
)
2
)
/
(
n
2
−
1
)
{displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)}
分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令
α
^
{displaystyle {widehat {alpha }}}
与
β
^
{displaystyle {widehat {beta }}}
为最小二乘法之估计值,
S
E
α
^
{displaystyle SE_{widehat {alpha }}}
与
S
E
β
^
{displaystyle SE_{widehat {beta }}}
为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于
ε
^
i
=
y
i
−
y
^
i
=
y
i
−
(
α
^
+
β
^
x
i
)
{displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})}
为残差(即估计误差),而
SSR
=
∑
i
=
1
n
ε
^
i
2
{displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}}
为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。
相关
- 阳痿勃起功能障碍(Erectile dysfunction,缩写:ED),为男性性功能障碍的一种,其特征在于阴茎在性行为期间无法勃起或维持勃起:538-39。勃起功能障碍可能会产生心理上的后果,因为它与关系
- 五百人会议五百人会议(Boule),又译作五百人议事会,是古希腊城邦雅典的民主政制的核心,它的职责是落实公民大会的决策,是一个总司一切事务的行政组织,为前6世纪晚期克利斯提尼改革时创立的机构
- 荷兰莱顿大学莱顿大学(荷兰语:Universiteit Leiden)座落在荷兰的莱顿市,是目前荷兰持续运作中最古老的大学。莱顿大学是科英布拉集团、Europaeum以及欧洲研究型大学联盟等大学联盟的一员,享有
- 草履虫Paramecium aurelia Paramecium bursaria Paramecium caudatum Paramecium tetraurelia草履虫(paramecium)属于纤毛虫门,寡膜纲。多数古老的单细胞生物,形状都不是很固定,有的甚
- 新潟大学新潟大学(日语:新潟大学/にいがただいがく Niigata daigaku;英语译名:Niigata University),是一所位于新潟县新潟市的日本国立大学。1949年由新潟医科大学等7校改制。2004年成为国
- 心搏过缓Bradycardia is a condition wherein an individual has a slow heart rate, typically defined as a heart rate of under 60 beats per minute (BPM) in adults. Bradycar
- 硫氰酸盐硫氰酸盐是硫氰酸根离子SCN−所成的盐,常见的包括无色的硫氰酸钾、硫氰酸钠、硫氰酸铵和硫氰酸汞。硫氰酸酯指含有SCN官能团的有机化合物。硫氰酸根离子与氰酸根离子−同类,只
- 圣彼得堡省纹章圣彼得堡省(Санкт-Петербургская губерния)是俄罗斯帝国的一个省。成立于1708年12月18日,原名英格里亞省,是俄国最早的八个省之一,1710年改名。瑞
- 记忆效应记忆效应(英语:memory effect)是一种发生在某些充电电池上(如镍镉电池或镍氢电池),经过多次充电后导致电池容量减少的现象。当镍镉电池(NiCd)或镍氢电池(NiMH)在多次没有完全放电的情
- 中果咖啡中果咖啡(学名:Coffea canephora)又名卡尼弗拉咖啡,异名罗布斯塔咖啡,是世界咖啡生产的第二大品种,占世界咖啡产量的30%左右。中果咖啡的浆果较小果咖啡大但比大果咖啡小,抗病害的