学生t检验

✍ dations ◷ 2025-04-03 11:05:23 #学生t检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。 基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例, Z = X ¯ / ( σ / n ) {displaystyle Z={bar {X}}/(sigma /{sqrt {n}})} ,其中 X ¯ {displaystyle {bar {X}}} 为样本平均数, n {displaystyle n} 为样本数, σ {displaystyle sigma } 为总体标准差。至于k在单样本t检验中为 σ ^ / σ {displaystyle {hat {sigma }}/sigma } ,其中 σ ^ {displaystyle {hat {sigma }}} 为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ = ∑ i = 1 n x i n {displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}} 为样本平均数, s = ∑ i = 1 n ( x i − x ¯ ) 2 n − 1 {displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}} 为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , d ¯ = ∑ i = 1 n d i n {displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}} 为配对样本差值之平均数, s d = ∑ i = 1 n ( d i − d ¯ ) 2 n − 1 {displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}} 为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ i = 1 n ( x 2 i − x ¯ 2 ) 2 ) / ( 2 n − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)} 为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 1 + n 2 − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)} 为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n 1 x 1 i ) / n 1 {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}} 及 x ¯ 2 = ( ∑ j = 1 n 2 x 2 j ) / n {displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n} 为二群样本各自的平均数, s 1 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 ) / ( n 1 − 1 ) {displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)} 及 s 2 2 = ( ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 2 − 1 ) {displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)} 分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令 α ^ {displaystyle {widehat {alpha }}} 与 β ^ {displaystyle {widehat {beta }}} 为最小二乘法之估计值, S E α ^ {displaystyle SE_{widehat {alpha }}} 与 S E β ^ {displaystyle SE_{widehat {beta }}} 为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于 ε ^ i = y i − y ^ i = y i − ( α ^ + β ^ x i ) {displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})} 为残差(即估计误差),而 SSR = ∑ i = 1 n ε ^ i 2 {displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}} 为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。

相关

  • 动态心电图动态心电图(英语:Holter monitor,即“霍特监测器”)是一种动态心电图设备,是便携式的心脏监测(英语:cardiac monitoring)设备,可以记录24小时内的心脏电传导系统资讯(一般一次至少会记
  • 在数学的分支图论中,图(Graph)用于表示物件与物件之间的关系,是图论的基本研究对象。一张图由一些小圆点(称为顶点或结点)和连结这些圆点的直线或曲线(称为边)组成。西尔维斯特在187
  • 近音近音(英语:approximants; approximant consonant,前称无擦通音)在语音学中是指一类介乎元音和辅音的声音。发近音时,两个发音部位彼此靠拢,组成声腔并且收窄,但仍然有足够空间予气
  • 第一公民第一公民,译自于拉丁语的“Princeps”——该字源自于“Princeps Senatus,元老院首席议员”,中文通常译为第一公民。这原本是古罗马共和时期的元老院的荣誉职衔,后经屋大维所创建
  • 神经突触突触(法语、英语、德语: Synapse)是神经元之间,或神经元与肌细胞、腺体之间通信的特异性接头。神经元与肌肉细胞之间的突触亦称为神经肌肉接头(neuromuscular junction)。中枢神
  • 偏利共生偏利共生(英语:Commensalism,又称为偏利共栖现象)是两种生物间共生关系的一种。是指在生物界中,某两物种间的生态关系,其中一种的生物会因这个关系而获得生存上的利益,但是,另一方的
  • 核结合能核结合能(英语:Nuclear binding energy),又称为原子能或核能,是由组成原子核的粒子之间发生的反应释放出的能量。原子能比化学反应中释放的热能要大将近5千万倍:铀核裂变的这种原
  • 告示牌《公告牌》(英语:Billboard,形象化为billboard)杂志,是一个美国娱乐杂志和媒体品牌,由埃德里奇工业(英语:Eldridge Industries)旗下的公告牌-好莱坞报道传媒集团(Billboard-Hollywood
  • 詹姆士·包斯威尔詹姆斯·博斯韦尔(英语:James Boswell, 9th Laird of Auchinleck,1740年10月29日-1795年5月19日),英国传记作家。最有名的作品是《约翰生传》,还有《黑白地群岛之旅》等作。生于苏
  • 防火墙防火墙(英语:Firewall)在计算机科学领域中是一个架设在互联网与企业内网之间的信息安全系统,根据企业预定的策略来监控往来的传输。防火墙可能是一台专属的网络设备或是运行于主