学生t检验

✍ dations ◷ 2025-04-26 11:52:44 #学生t检验
学生t检验(英语:Student's t-test)是指虚无假设成立时的任一检定统计有学生t-分布的统计假说检定,属于母数统计。学生t检验常作为检验一群来自正态分配总体的独立样本之期望值的是否为某一实数,或是二(两)群来自正态分配总体的独立样本之期望值的差是否为某一实数。举个简单的例子,也就是说我们可以在抓取一个班级的男生,去比较该班与全校男生之身高差异程度是不是推测的那样,或是不同年级班上的男生身高的差异的场合是否一如预期使用此检验法。学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生”则是他的笔名。 基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈斯特受雇于都柏林的健力士酿酒厂担任统计学家。戈斯特提出了t检验以降低啤酒质量监控的成本。戈斯特于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈斯特真实身份的。今日,它更常被应用于小样本判断的置信度。最常用t检验的情况有:大多数的t检定之统计量具有t = Z/k的形式,其中Z与k是已知资料的函数。Z通常被设计成对于对立假说有关的形式,而k是一个尺度参数使t服从于t分布。以单样本t检验为例, Z = X ¯ / ( σ / n ) {displaystyle Z={bar {X}}/(sigma /{sqrt {n}})} ,其中 X ¯ {displaystyle {bar {X}}} 为样本平均数, n {displaystyle n} 为样本数, σ {displaystyle sigma } 为总体标准差。至于k在单样本t检验中为 σ ^ / σ {displaystyle {hat {sigma }}/sigma } ,其中 σ ^ {displaystyle {hat {sigma }}} 为样本的标准偏差。在符合零假说的条件下,t检定有以下前提:检验零假说为一群来自正态分配独立样本xi之总体期望值μ为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ = ∑ i = 1 n x i n {displaystyle {overline {x}}={frac {sum _{i=1}^{n}x_{i}}{n}}} 为样本平均数, s = ∑ i = 1 n ( x i − x ¯ ) 2 n − 1 {displaystyle s={sqrt {frac {sum _{i=1}^{n}(x_{i}-{overline {x}})^{2}}{n-1}}}} 为样本标准偏差,n为样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。配对样本t检验可视为单样本t检验的扩展,不过检验的对象由一群来自正态分配独立样本更改为二群配对样本之观测值之差。若二群配对样本x1i与x2i之差为di = x1i − x2i独立且来自正态分配,则di之总体期望值μ是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , d ¯ = ∑ i = 1 n d i n {displaystyle {overline {d}}={frac {sum _{i=1}^{n}d_{i}}{n}}} 为配对样本差值之平均数, s d = ∑ i = 1 n ( d i − d ¯ ) 2 n − 1 {displaystyle s_{d}={sqrt {frac {sum _{i=1}^{n}(d_{i}-{overline {d}})^{2}}{n-1}}}} 为配对样本差值之标准偏差,n为配对样本数。该统计量t在零假说:μ = μ0为真的条件下服从自由度为n − 1的t分布。若二群独立样本x1i与x2i具有相同之样本数n,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n {displaystyle i=1ldots n} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ i = 1 n ( x 2 i − x ¯ 2 ) 2 ) / ( 2 n − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{i=1}^{n}(x_{2i}-{overline {x}}_{2})^{2})/(2n-2)} 为样本之共同方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为2n − 2的t分布。若二群独立样本x1i与x2j具有不相同之样本数n1与n2,并且彼此独立及来自二个方差相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n x 1 i ) / n {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n}x_{1i})/n} 及 x ¯ 2 = ( ∑ i = 1 n x 2 i ) / n {displaystyle {overline {x}}_{2}=(sum _{i=1}^{n}x_{2i})/n} 为二群样本各自的平均数, s p 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 + ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 1 + n 2 − 2 ) {displaystyle s_{p}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2}+sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{1}+n_{2}-2)} 为二群样本共同之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为n1 + n2 − 2的t分布。若二群独立样本x1i与x2j具有相等或不相同之样本数n1与n2,并且彼此独立及来自二个方差不相等的正态分配,则二群总体之期望值之差μ1 - μ2是否为μ0可利用以下统计量其中 i = 1 … n 1 {displaystyle i=1ldots n_{1}} ,其中 j = 1 … n 2 {displaystyle j=1ldots n_{2}} , x ¯ 1 = ( ∑ i = 1 n 1 x 1 i ) / n 1 {displaystyle {overline {x}}_{1}=(sum _{i=1}^{n_{1}}x_{1i})/n_{1}} 及 x ¯ 2 = ( ∑ j = 1 n 2 x 2 j ) / n {displaystyle {overline {x}}_{2}=(sum _{j=1}^{n_{2}}x_{2j})/n} 为二群样本各自的平均数, s 1 2 = ( ∑ i = 1 n ( x 1 i − x ¯ 1 ) 2 ) / ( n 1 − 1 ) {displaystyle s_{1}^{2}=(sum _{i=1}^{n}(x_{1i}-{overline {x}}_{1})^{2})/(n_{1}-1)} 及 s 2 2 = ( ∑ j = 1 n ( x 2 j − x ¯ 2 ) 2 ) / ( n 2 − 1 ) {displaystyle s_{2}^{2}=(sum _{j=1}^{n}(x_{2j}-{overline {x}}_{2})^{2})/(n_{2}-1)} 分别为二群样本之方差。该统计量t在零假说:μ1 - μ2 = μ0为真的条件下服从自由度为之t分布。这种方法又常称为Welch检验。在简单线性回归的模型其中xi,i = 1, ..., n为已知,α与β为未知系数,εi为残差独立且服从期望值0且方差σ2未知的正态分布,yi,i = 1, ..., n为观测值。我们可以检验回归系数(在此例即为回归式之斜率)β是否相等于特定的β0(通常使β0 = 0以检验xi对yi是否有关联)。令 α ^ {displaystyle {widehat {alpha }}} 与 β ^ {displaystyle {widehat {beta }}} 为最小二乘法之估计值, S E α ^ {displaystyle SE_{widehat {alpha }}} 与 S E β ^ {displaystyle SE_{widehat {beta }}} 为最小二乘法估计值之标准误差,则在零假设为β = β0的情况下服从自由度为n − 2之t分布,其中由于 ε ^ i = y i − y ^ i = y i − ( α ^ + β ^ x i ) {displaystyle {widehat {varepsilon }}_{i}=y_{i}-{widehat {y}}_{i}=y_{i}-({widehat {alpha }}+{widehat {beta }}x_{i})} 为残差(即估计误差),而 SSR = ∑ i = 1 n ε ^ i 2 {displaystyle {text{SSR}}=sum _{i=1}^{n}{widehat {varepsilon }}_{i}^{;2}} 为残差之离均平方和,我们可改写t为另请参阅:方差齐性检验(F检验)大多数的试算表软件及统计软件,诸如QtiPlot、OpenOffice.org Calc、LibreOffice Calc、Microsoft Excel、SAS、SPSS、Stata、DAP、gretl、R、Python ()、PSPP、Minitab等,都可以进行t检验之运算。

相关

  • 失能调整生命年失能调整生命年(英语:disability-adjusted life year,缩写:DALY)是衡量整体疾病负担(英语:Disease burden)的一种方法。最初是由世界卫生组织所开发,现在则渐渐地在公共卫生和健康影
  • 农业农业是美国的主要工业,同时美国也是一个粮食净出口国。根据2007年农业普查,美国有220万个农场,占地面积373万平方公里(9亿2200万英亩),平均每个农场占地169公顷(418英亩)。虽然每个
  • 字母系统字母系统是拼音文字系统当中最小的,数量最少的区别性单位,即字位,如拉丁字母源自拉丁语采用的字母、阿拉伯字母源自阿拉伯语采用的字母。字母系统的特点是字母大致上对应该语言
  • 水产学渔业、水产业是指采捕或养殖水生动物、植物的生产事业和行业。渔业狭义上指捕捞渔业或称捕鱼业、渔捞业,可细分近海渔业和远洋渔业。此外,渔业还有一种叫养殖渔业(或称水产养殖
  • Der Doktor Schnabel von Rom瘟疫医生(Plague doctor)是中世纪时期负责治疗黑死病患者的医师。当时流行病肆虐严重的欧洲城镇往往会自行聘雇这些医师来减缓瘟疫扩散的状况。他们的薪资是由城镇政府支付的,
  • 本德市本德(Bend)位于美国俄勒冈州中部,德舒特河畔、喀斯喀特山脉脚下,是德舒特县的县治。根据美国2000年人口普查,共有人口52,029人,其中白人占93.98%、亚裔美国人占1%。
  • 美国法律美国法律(law of the United States)源自美国独立战争时期的英国普通法体系,只是在最高权力条款规定下,美国宪法、国会制定的其他法律和美国参与的国际条约是国家的最高法律。这
  • .re.re为法国海外领地留尼汪国家及地区顶级域(ccTLD)的域名。A .ac .ad .ae .af .ag .ai .al .am .ao .aq .ar .as .at .au .aw .ax .az   B .ba .bb .bd .be .bf .bg .bh .b
  • 阿修罗道阿修罗(梵语:असुर,Asura;巴利语:असुर,Asura),亦译为阿须罗、阿索罗、阿苏罗、阿素落、阿须伦、阿须轮,简称修罗,有汉字词组“修罗场”等。汉地直译有非天、非酒、无端正等错误
  • 亚洲奥林匹克理事会亚洲奥林匹克理事会(英语:Olympic Council of Asia,缩写OCA),简称亚洲奥会或亚奥理事会,是国际奥委会授权,管理亚洲地区的奥运会、洲际赛事和国际体育赛事,并负责亚洲地区奥运的发展