首页 >
梯度
✍ dations ◷ 2025-04-03 17:20:01 #梯度
在向量微积分中,梯度(gradient)是一种关于多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数
f
{displaystyle f}
在点
P
{displaystyle P}
上的梯度,是以
f
{displaystyle f}
在
P
{displaystyle P}
上的偏导数为分量的向量。就像一元函数的导数表示这个函数图形的切线的斜率,如果多元函数在点
P
{displaystyle P}
上的梯度不是零向量,它的方向是这个函数在
P
{displaystyle P}
上最大增长的方向,而它的量是在这个方向上的增长率。梯度向量中的幅值和方向是与坐标的选择无关的独立量。在欧几里德空间或更一般的流形之间的多元可微映射的向量值函数的梯度推广是雅可比矩阵。在巴拿赫空间之间的函数的进一步推广是弗雷歇导数。假设有一个房间,房间内所有点的温度由一个标量场
ϕ
{displaystyle phi }
给出的,即点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的温度是
ϕ
(
x
,
y
,
z
)
{displaystyle phi (x,y,z)}
。假设温度不随时间改变。然后,在房间的每一点,该点的梯度将显示变热最快的方向。梯度的大小将表示在该方向上变热的速率。考虑一座高度在
(
x
,
y
)
{displaystyle (x,y)}
点是
H
(
x
,
y
)
{displaystyle H(x,y)}
的山。
H
{displaystyle H}
这一点的梯度是在该点坡度(或者说斜度)最陡的方向。梯度的大小告诉我们坡度到底有多陡。梯度也可以告诉我们一个数量在不是最快变化方向的其他方向的变化速度。再次考虑山坡的例子。可以有条直接上山的路其坡度是最大的,则其坡度是梯度的大小。也可以有一条和上坡方向成一个角度的路,例如投影与水平面上的夹角为60°。则,若最陡的坡度是40%,这条路的坡度小一点,是20%,也就是40%乘以60°的余弦。这个现象可以如下数学的表示。山的高度函数
H
{displaystyle H}
的梯度点积一个单位向量给出了表面在该向量的方向上的斜率。这称为方向导数。标量函数
f
:
R
n
↦
R
{displaystyle fcolon mathbb {R} ^{n}mapsto mathbb {R} }
的梯度表示为:
∇
f
{displaystyle nabla f}
或
grad
f
{displaystyle operatorname {grad} f}
,其中
∇
{displaystyle nabla }
(nabla)表示向量微分算子。函数
f
{displaystyle f}
的梯度,
∇
f
{displaystyle nabla f}
, 为向量场且对任意单位向量 v 满足下列方程:∇
f
{displaystyle nabla f}
在三维直角坐标系中表示为i, j, k 为标准的单位向量,分别指向 x, y 跟 z 坐标的方向。
(参看偏导数和向量。)虽然使用坐标表达,但结果是在正交变换下不变,从几何的观点来看,这是应该的。举例来讲,函数
f
(
x
,
y
,
z
)
=
2
x
+
3
y
2
−
sin
(
z
)
{displaystyle f(x,y,z)=2x+3y^{2}-sin(z)}
的梯度为:在圆柱坐标系中,
f
{displaystyle f}
的梯度为:ρ 是 P 点与 z-轴的垂直距离。
φ 是线 OP 在 xy-面的投影线与正 x-轴之间的夹角。
z 与直角坐标的
z
{displaystyle z}
等值。
eρ, eφ 跟 ez
为单位向量,指向坐标的方向。在球坐标系中:其中θ为极角,φ方位角。相对于n×1向量x的梯度算子记作
∇
x
{displaystyle nabla _{boldsymbol {x}}}
,定义为以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为m维行向量函数
f
(
x
)
=
[
f
1
(
x
)
,
f
2
(
x
)
,
⋯
,
f
m
(
x
)
]
{displaystyle {boldsymbol {f}}({boldsymbol {x}})=}
相对于n维实向量x的梯度为一n×m矩阵,定义为实标量函数
f
(
A
)
{displaystyle {boldsymbol {f}}({boldsymbol {A}})}
相对于m×n实矩阵A的梯度为一m×n矩阵,简称梯度矩阵,定义为以下法则适用于实标量函数对向量的梯度以及对矩阵的梯度。一个黎曼流形
M
{displaystyle M}
上的对于任意可微函数
f
{displaystyle f}
的梯度
∇
f
{displaystyle nabla f}
是一个向量场,使得对于每个向量
ξ
{displaystyle xi }
,其中
⟨
⋅
,
⋅
⟩
{displaystyle langle cdot ,cdot rangle }
代表
M
{displaystyle M}
上的内积(度量)而
ξ
f
(
p
)
,
p
∈
M
{displaystyle xi f(p),pin M}
是
f
{displaystyle f}
在点
p
{displaystyle p}
,方向为
ξ
(
p
)
{displaystyle xi (p)}
的方向导数。换句话说,如果
φ
:
U
⊆
M
↦
R
n
{displaystyle varphi :Usubseteq Mmapsto mathbb {R} ^{n}}
为
p
{displaystyle p}
附近的局部坐标,在此坐标下有
ξ
(
x
)
=
∑
j
a
j
(
x
)
∂
∂
x
j
{displaystyle xi (x)=sum _{j}a_{j}(x){frac {partial }{partial x_{j}}}}
,则
ξ
f
(
p
)
{displaystyle xi f(p)}
将成为:函数的梯度和外微分相关,因为
ξ
f
=
d
f
(
ξ
)
{displaystyle xi f=df(xi )}
,实际上内积容许我们可以用一种标准的方式将1-形式
d
f
{displaystyle df}
和向量场
∇
f
{displaystyle nabla f}
建立联系。由
∇
f
{displaystyle nabla f}
的定义,
d
f
(
ξ
)
=
⟨
∇
f
,
ξ
⟩
{displaystyle df(xi )=langle nabla f,xi rangle }
,这样
f
{displaystyle f}
的梯度可以"等同"于0-形式的外微分
d
f
{displaystyle df}
,这里"等同"意味着:两集合
{
d
f
}
{displaystyle {df}}
和
{
∇
f
}
{displaystyle {nabla f}}
之间有1对1的满射。由定义可算流形上
∇
f
{displaystyle nabla f}
的局部坐标表达式为:请注意这是流形上对黎曼度量
d
s
2
=
∑
i
j
g
i
j
d
x
i
d
x
j
{displaystyle ds^{2}=sum _{ij}g_{ij}dx^{i}dx^{j}}
的公式,跟
R
n
{displaystyle mathbb {R} ^{n}}
里直角坐标的公式不同。常常我们写时会省略求和
∑
{displaystyle sum }
符号,不过为了避免混淆,在这里的公式还是加上去了。
相关
- University of Minnesota明尼苏达大学双城分校(英语:University of Minnesota, Twin Cities),是位于美国明尼苏达州双城区(即明尼阿波利斯及圣保罗)的一所公立大学,为明尼苏达大学系统历史最悠久,规模最大的
- 中缀中缀(infix),又称接中辞,是一种置入在一组词干(现有字词)中央的词缀。它对比于“外缀”(adfix),那连接到词干外围的词缀,比如前缀或后缀等词缀。当标记文字置于行间注记(interlinear gl
- 氧化性非金属性(氧化性)指原子、分子或离子在化学反应中吸收电子能力。吸收电子能力越强的粒子其非金属性也就越强;反之则越弱,而其金属性(还原性)就越强。非金属性最强的元素是氟。值得
- 黄酮类化合物黄酮类化合物(英语:Flavonoid,又称类黄酮)基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃(英语:Benzopyran)-4-酮)骨架的黄酮类化合物,如右图所示,基本母核为2-苯基色原酮类化合物,现在则泛指
- 克洛德·洛兰克洛德·洛兰 (法语:Claude Lorrain,约1600年-1682年11月21日),也译作劳兰、劳伦或罗兰恩,原名克洛德·热莱(法语:Claude Gellée),是法国巴洛克时期的风景画家,但主要活动是在意大利。
- 北荷兰省北荷兰省(荷兰语:Noord-Holland)是位于荷兰西北部的一个省,省会为哈勒姆,境内主要城市包括有荷兰首都阿姆斯特丹与阿尔克马尔等。北荷兰省处于北海和艾瑟尔湖之间的一个半岛上,境
- 多肽合成多肽合成(英语:Peptide synthesis)为有机化学中多肽的合成过程,多肽是由多个氨基酸借由肽键连接起来的有机化合物。在生物中,合成长型多肽(蛋白质)的过程,称作蛋白质生物合成。液相
- 极性共价键在化学中,极性(polarity),是指一个共价键或一个共价分子中电荷分布的不均匀性。如果电荷分布得不均匀,则称该键或分子为极性;如果均匀,则称为非极性。物质的一些物理性质(如溶解性、
- 奥运会比赛项目奥运会项目由国际奥林匹克委员会指定可以在夏季奥林匹克运动会及冬季奥林匹克运动会上进行比赛的运动项目。要被列入夏季奥运项目列表的运动,必须在四大洲至少有75个国家或地
- 东南客运东南汽车客运股份有限公司(英语:Southeast Bus),简称东南客运,于2002年6月18日创立,与建明客运属于大新集团旗下公司,主要经营台北市联营公车、台中市公车、高雄市公车。东南客运是