梯度

✍ dations ◷ 2024-11-05 19:43:02 #梯度
在向量微积分中,梯度(gradient)是一种关于多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数 f {displaystyle f} 在点 P {displaystyle P} 上的梯度,是以 f {displaystyle f} 在 P {displaystyle P} 上的偏导数为分量的向量。就像一元函数的导数表示这个函数图形的切线的斜率,如果多元函数在点 P {displaystyle P} 上的梯度不是零向量,它的方向是这个函数在 P {displaystyle P} 上最大增长的方向,而它的量是在这个方向上的增长率。梯度向量中的幅值和方向是与坐标的选择无关的独立量。在欧几里德空间或更一般的流形之间的多元可微映射的向量值函数的梯度推广是雅可比矩阵。在巴拿赫空间之间的函数的进一步推广是弗雷歇导数。假设有一个房间,房间内所有点的温度由一个标量场 ϕ {displaystyle phi } 给出的,即点 ( x , y , z ) {displaystyle (x,y,z)} 的温度是 ϕ ( x , y , z ) {displaystyle phi (x,y,z)} 。假设温度不随时间改变。然后,在房间的每一点,该点的梯度将显示变热最快的方向。梯度的大小将表示在该方向上变热的速率。考虑一座高度在 ( x , y ) {displaystyle (x,y)} 点是 H ( x , y ) {displaystyle H(x,y)} 的山。 H {displaystyle H} 这一点的梯度是在该点坡度(或者说斜度)最陡的方向。梯度的大小告诉我们坡度到底有多陡。梯度也可以告诉我们一个数量在不是最快变化方向的其他方向的变化速度。再次考虑山坡的例子。可以有条直接上山的路其坡度是最大的,则其坡度是梯度的大小。也可以有一条和上坡方向成一个角度的路,例如投影与水平面上的夹角为60°。则,若最陡的坡度是40%,这条路的坡度小一点,是20%,也就是40%乘以60°的余弦。这个现象可以如下数学的表示。山的高度函数 H {displaystyle H} 的梯度点积一个单位向量给出了表面在该向量的方向上的斜率。这称为方向导数。标量函数 f : R n ↦ R {displaystyle fcolon mathbb {R} ^{n}mapsto mathbb {R} } 的梯度表示为: ∇ f {displaystyle nabla f} 或 grad ⁡ f {displaystyle operatorname {grad} f} ,其中 ∇ {displaystyle nabla } (nabla)表示向量微分算子。函数 f {displaystyle f} 的梯度, ∇ f {displaystyle nabla f} , 为向量场且对任意单位向量 v 满足下列方程:∇ f {displaystyle nabla f} 在三维直角坐标系中表示为i, j, k 为标准的单位向量,分别指向 x, y 跟 z 坐标的方向。 (参看偏导数和向量。)虽然使用坐标表达,但结果是在正交变换下不变,从几何的观点来看,这是应该的。举例来讲,函数 f ( x , y , z ) = 2 x + 3 y 2 − sin ⁡ ( z ) {displaystyle f(x,y,z)=2x+3y^{2}-sin(z)} 的梯度为:在圆柱坐标系中, f {displaystyle f} 的梯度为:ρ 是 P 点与 z-轴的垂直距离。 φ 是线 OP 在 xy-面的投影线与正 x-轴之间的夹角。 z 与直角坐标的 z {displaystyle z} 等值。 eρ, eφ 跟 ez 为单位向量,指向坐标的方向。在球坐标系中:其中θ为极角,φ方位角。相对于n×1向量x的梯度算子记作 ∇ x {displaystyle nabla _{boldsymbol {x}}} ,定义为以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为m维行向量函数 f ( x ) = [ f 1 ( x ) , f 2 ( x ) , ⋯ , f m ( x ) ] {displaystyle {boldsymbol {f}}({boldsymbol {x}})=} 相对于n维实向量x的梯度为一n×m矩阵,定义为实标量函数 f ( A ) {displaystyle {boldsymbol {f}}({boldsymbol {A}})} 相对于m×n实矩阵A的梯度为一m×n矩阵,简称梯度矩阵,定义为以下法则适用于实标量函数对向量的梯度以及对矩阵的梯度。一个黎曼流形 M {displaystyle M} 上的对于任意可微函数 f {displaystyle f} 的梯度 ∇ f {displaystyle nabla f} 是一个向量场,使得对于每个向量 ξ {displaystyle xi } ,其中 ⟨ ⋅ , ⋅ ⟩ {displaystyle langle cdot ,cdot rangle } 代表 M {displaystyle M} 上的内积(度量)而 ξ f ( p ) , p ∈ M {displaystyle xi f(p),pin M} 是 f {displaystyle f} 在点 p {displaystyle p} ,方向为 ξ ( p ) {displaystyle xi (p)} 的方向导数。换句话说,如果 φ : U ⊆ M ↦ R n {displaystyle varphi :Usubseteq Mmapsto mathbb {R} ^{n}} 为 p {displaystyle p} 附近的局部坐标,在此坐标下有 ξ ( x ) = ∑ j a j ( x ) ∂ ∂ x j {displaystyle xi (x)=sum _{j}a_{j}(x){frac {partial }{partial x_{j}}}} ,则 ξ f ( p ) {displaystyle xi f(p)} 将成为:函数的梯度和外微分相关,因为 ξ f = d f ( ξ ) {displaystyle xi f=df(xi )} ,实际上内积容许我们可以用一种标准的方式将1-形式 d f {displaystyle df} 和向量场 ∇ f {displaystyle nabla f} 建立联系。由 ∇ f {displaystyle nabla f} 的定义, d f ( ξ ) = ⟨ ∇ f , ξ ⟩ {displaystyle df(xi )=langle nabla f,xi rangle } ,这样 f {displaystyle f} 的梯度可以"等同"于0-形式的外微分 d f {displaystyle df} ,这里"等同"意味着:两集合 { d f } {displaystyle {df}} 和 { ∇ f } {displaystyle {nabla f}} 之间有1对1的满射。由定义可算流形上 ∇ f {displaystyle nabla f} 的局部坐标表达式为:请注意这是流形上对黎曼度量 d s 2 = ∑ i j g i j d x i d x j {displaystyle ds^{2}=sum _{ij}g_{ij}dx^{i}dx^{j}} 的公式,跟 R n {displaystyle mathbb {R} ^{n}} 里直角坐标的公式不同。常常我们写时会省略求和 ∑ {displaystyle sum } 符号,不过为了避免混淆,在这里的公式还是加上去了。

相关

  • 固氮作用固氮作用(英语:Nitrogen fixation),简称固氮,指将空气中游离态的氮(氮气)转化为含氮化合物(如硝酸盐、氨、二氧化氮)的过程。可分为自然固氮以及人工固氮两种。自然固氮(Natural nitro
  • 变形虫变形虫,拉丁文为Amoeba,中文音译为阿米巴,所以也叫做阿米巴原虫、阿米巴变形虫或阿米巴虫或称食脑虫(透过感染鼻腔而进入脑部感染的死亡率高达九成)。是一种单细胞原生动物,仅由一
  • LDsub50/sub半数致死量(英语:Median Lethal Dose),简称LD50(即Lethal Dose, 50%),在毒理学中是描述有毒物质或辐射的毒性的常用指标。按照医学主题词表(MeSH)的定义,LD50是指“能杀死一半试验总体
  • 抗核抗体抗核抗体,英文简称ANA(Anti-nuclear antibody),又称为抗核因子,英文简称ANF(Anti-nuclear factor),是一种直接与细胞核内容物相对抗的自身抗体,这种抗体会将体内正常组织当作外来物进
  • Pan黑猩猩属(Pan) 是灵长目人科人亚科人族之下的一个生物分类,包括两个物种:黑猩猩属生物与人属生物之间只有 1% 至 2% 的基因差异,部分生物学家因此主张把两个属的生物归入同一属
  • 霜冻酸奶冻酸奶是用酸奶,有时候用其他乳制品制成的冷冻甜点。它通常比冰淇淋酸,脂肪也比较少 (因为使用的是牛奶而不是奶油)。它跟牛奶冻 (近几年被称之为低脂肪或轻冰淇淋)和常见的霜淇淋
  • 南宽扎省南宽扎省位于安哥拉中西,与本哥省、本吉拉省、比耶省、北广萨省、万博省、马兰哲省等省份相邻。
  • 马德拉马德拉(葡萄牙语:Madeira)是葡萄牙在其国土西南方的北大西洋中央所辖的群岛,也是其主岛的岛名。在葡萄牙语中,“马德拉”是木头之意。明代《坤舆万国全图》中即把马德拉岛称为“
  • 幻觉/错觉幻觉(英语:Hallucination)是指在没有客观刺激作用于相应感官的条件下,而感觉到的一种真实的、生动的知觉。相对的,错觉则是具有真正的外在刺激,但反应错误的认知。幻觉是知觉障碍
  • 波尔-埃里克·赫耶尔·拉尔森波尔-埃里克·赫耶尔·拉尔森(丹麦语:Poul-Erik Høyer Larsen,1965年9月20日-),丹麦退役羽毛球运动员。1988年、1990年、1993年-1995年和1999年获得六次丹麦羽毛球公开赛男子单打