梯度

✍ dations ◷ 2025-09-02 13:39:13 #梯度
在向量微积分中,梯度(gradient)是一种关于多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数 f {displaystyle f} 在点 P {displaystyle P} 上的梯度,是以 f {displaystyle f} 在 P {displaystyle P} 上的偏导数为分量的向量。就像一元函数的导数表示这个函数图形的切线的斜率,如果多元函数在点 P {displaystyle P} 上的梯度不是零向量,它的方向是这个函数在 P {displaystyle P} 上最大增长的方向,而它的量是在这个方向上的增长率。梯度向量中的幅值和方向是与坐标的选择无关的独立量。在欧几里德空间或更一般的流形之间的多元可微映射的向量值函数的梯度推广是雅可比矩阵。在巴拿赫空间之间的函数的进一步推广是弗雷歇导数。假设有一个房间,房间内所有点的温度由一个标量场 ϕ {displaystyle phi } 给出的,即点 ( x , y , z ) {displaystyle (x,y,z)} 的温度是 ϕ ( x , y , z ) {displaystyle phi (x,y,z)} 。假设温度不随时间改变。然后,在房间的每一点,该点的梯度将显示变热最快的方向。梯度的大小将表示在该方向上变热的速率。考虑一座高度在 ( x , y ) {displaystyle (x,y)} 点是 H ( x , y ) {displaystyle H(x,y)} 的山。 H {displaystyle H} 这一点的梯度是在该点坡度(或者说斜度)最陡的方向。梯度的大小告诉我们坡度到底有多陡。梯度也可以告诉我们一个数量在不是最快变化方向的其他方向的变化速度。再次考虑山坡的例子。可以有条直接上山的路其坡度是最大的,则其坡度是梯度的大小。也可以有一条和上坡方向成一个角度的路,例如投影与水平面上的夹角为60°。则,若最陡的坡度是40%,这条路的坡度小一点,是20%,也就是40%乘以60°的余弦。这个现象可以如下数学的表示。山的高度函数 H {displaystyle H} 的梯度点积一个单位向量给出了表面在该向量的方向上的斜率。这称为方向导数。标量函数 f : R n ↦ R {displaystyle fcolon mathbb {R} ^{n}mapsto mathbb {R} } 的梯度表示为: ∇ f {displaystyle nabla f} 或 grad ⁡ f {displaystyle operatorname {grad} f} ,其中 ∇ {displaystyle nabla } (nabla)表示向量微分算子。函数 f {displaystyle f} 的梯度, ∇ f {displaystyle nabla f} , 为向量场且对任意单位向量 v 满足下列方程:∇ f {displaystyle nabla f} 在三维直角坐标系中表示为i, j, k 为标准的单位向量,分别指向 x, y 跟 z 坐标的方向。 (参看偏导数和向量。)虽然使用坐标表达,但结果是在正交变换下不变,从几何的观点来看,这是应该的。举例来讲,函数 f ( x , y , z ) = 2 x + 3 y 2 − sin ⁡ ( z ) {displaystyle f(x,y,z)=2x+3y^{2}-sin(z)} 的梯度为:在圆柱坐标系中, f {displaystyle f} 的梯度为:ρ 是 P 点与 z-轴的垂直距离。 φ 是线 OP 在 xy-面的投影线与正 x-轴之间的夹角。 z 与直角坐标的 z {displaystyle z} 等值。 eρ, eφ 跟 ez 为单位向量,指向坐标的方向。在球坐标系中:其中θ为极角,φ方位角。相对于n×1向量x的梯度算子记作 ∇ x {displaystyle nabla _{boldsymbol {x}}} ,定义为以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为m维行向量函数 f ( x ) = [ f 1 ( x ) , f 2 ( x ) , ⋯ , f m ( x ) ] {displaystyle {boldsymbol {f}}({boldsymbol {x}})=} 相对于n维实向量x的梯度为一n×m矩阵,定义为实标量函数 f ( A ) {displaystyle {boldsymbol {f}}({boldsymbol {A}})} 相对于m×n实矩阵A的梯度为一m×n矩阵,简称梯度矩阵,定义为以下法则适用于实标量函数对向量的梯度以及对矩阵的梯度。一个黎曼流形 M {displaystyle M} 上的对于任意可微函数 f {displaystyle f} 的梯度 ∇ f {displaystyle nabla f} 是一个向量场,使得对于每个向量 ξ {displaystyle xi } ,其中 ⟨ ⋅ , ⋅ ⟩ {displaystyle langle cdot ,cdot rangle } 代表 M {displaystyle M} 上的内积(度量)而 ξ f ( p ) , p ∈ M {displaystyle xi f(p),pin M} 是 f {displaystyle f} 在点 p {displaystyle p} ,方向为 ξ ( p ) {displaystyle xi (p)} 的方向导数。换句话说,如果 φ : U ⊆ M ↦ R n {displaystyle varphi :Usubseteq Mmapsto mathbb {R} ^{n}} 为 p {displaystyle p} 附近的局部坐标,在此坐标下有 ξ ( x ) = ∑ j a j ( x ) ∂ ∂ x j {displaystyle xi (x)=sum _{j}a_{j}(x){frac {partial }{partial x_{j}}}} ,则 ξ f ( p ) {displaystyle xi f(p)} 将成为:函数的梯度和外微分相关,因为 ξ f = d f ( ξ ) {displaystyle xi f=df(xi )} ,实际上内积容许我们可以用一种标准的方式将1-形式 d f {displaystyle df} 和向量场 ∇ f {displaystyle nabla f} 建立联系。由 ∇ f {displaystyle nabla f} 的定义, d f ( ξ ) = ⟨ ∇ f , ξ ⟩ {displaystyle df(xi )=langle nabla f,xi rangle } ,这样 f {displaystyle f} 的梯度可以"等同"于0-形式的外微分 d f {displaystyle df} ,这里"等同"意味着:两集合 { d f } {displaystyle {df}} 和 { ∇ f } {displaystyle {nabla f}} 之间有1对1的满射。由定义可算流形上 ∇ f {displaystyle nabla f} 的局部坐标表达式为:请注意这是流形上对黎曼度量 d s 2 = ∑ i j g i j d x i d x j {displaystyle ds^{2}=sum _{ij}g_{ij}dx^{i}dx^{j}} 的公式,跟 R n {displaystyle mathbb {R} ^{n}} 里直角坐标的公式不同。常常我们写时会省略求和 ∑ {displaystyle sum } 符号,不过为了避免混淆,在这里的公式还是加上去了。

相关

  • 产科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学产科学是一门研究女性妊娠期、分娩期
  • 免疫沉淀法免疫沉淀法(Immunoprecipitation, IP)是一种研究蛋白质间交互作用的生物技术,这种技术是将蛋白质视为抗原,并利用抗体与之进行特异性结合的特性,来进行研究。这项技术可用来将
  • 几内亚蠕虫Gordius medinensis Linnaeus, 1758麦地那龙线虫(学名:Dracunculus medinensis),又称几内亚龙线虫,是一种可寄生于人体内的寄生虫,属于线虫的龙线虫属(英语:Dracunculus_(nematode)),
  • 米尔顿·奥博特阿波罗·米尔顿·奥博特(斯瓦希里语:Apollo Milton Obote,1924年12月28日-2005年10月10日),乌干达政治家,1962至1966年间出任该国总理,1966至1971及1980至1985年期间两度出任总统。1
  • 帝鳄帝鳄属(属名:Sarcosuchus)又称为肌鳄、帝王鳄,意思为“肌肉鳄鱼”,是种已灭绝鳄类。它们生存在于早白垩纪的非洲,是曾经存活过的最大型鳄类动物之一。它几乎是现今咸水鳄的2倍大,重
  • 叠层岩叠层石(英语:Stromatolite,或称层叠石,源自希腊文strōma与lithos)可定义为“从某一点或有限的表面开始增生,并聚集石化,形成逐渐增大的沉淀物生成构造”。自然界中有许多不同型态
  • 企业WikiWiki引擎,或称为Wiki软件,是指用来架设Wiki的软件。广义来说,即是一种软件能作为网络共笔,供网民自行编辑,并最终集合成完整的数据库。狭义来说,即是能达成维基百科样式的软件。由
  • 梅杰约翰·梅杰爵士,KG,CH (英语:Sir John Major,1943年3月29日-)是一名英国政治家,于1990年至1997年出任英国首相和英国保守党党魁。他曾于1987年至1990年间在玛格利特·撒切尔内阁相继
  • 维斯马维斯马(德语:Wismar),是德国北部梅克伦堡-前波美拉尼亚州的一个市镇。总面积41.69平方公里,总人口44057人,其中男性21541人,女性22516人(2011年12月31日),人口密度1 057人/平方公里。
  • 和春技术学院和春技术学院(英语:Fortune Institute of Technology),简称和春学院,是一所创立于高雄市的私立学校。