首页 >
梯度
✍ dations ◷ 2025-01-23 21:12:18 #梯度
在向量微积分中,梯度(gradient)是一种关于多元导数的概括。平常的一元(单变量)函数的导数是标量值函数,而多元函数的梯度是向量值函数。多元可微函数
f
{displaystyle f}
在点
P
{displaystyle P}
上的梯度,是以
f
{displaystyle f}
在
P
{displaystyle P}
上的偏导数为分量的向量。就像一元函数的导数表示这个函数图形的切线的斜率,如果多元函数在点
P
{displaystyle P}
上的梯度不是零向量,它的方向是这个函数在
P
{displaystyle P}
上最大增长的方向,而它的量是在这个方向上的增长率。梯度向量中的幅值和方向是与坐标的选择无关的独立量。在欧几里德空间或更一般的流形之间的多元可微映射的向量值函数的梯度推广是雅可比矩阵。在巴拿赫空间之间的函数的进一步推广是弗雷歇导数。假设有一个房间,房间内所有点的温度由一个标量场
ϕ
{displaystyle phi }
给出的,即点
(
x
,
y
,
z
)
{displaystyle (x,y,z)}
的温度是
ϕ
(
x
,
y
,
z
)
{displaystyle phi (x,y,z)}
。假设温度不随时间改变。然后,在房间的每一点,该点的梯度将显示变热最快的方向。梯度的大小将表示在该方向上变热的速率。考虑一座高度在
(
x
,
y
)
{displaystyle (x,y)}
点是
H
(
x
,
y
)
{displaystyle H(x,y)}
的山。
H
{displaystyle H}
这一点的梯度是在该点坡度(或者说斜度)最陡的方向。梯度的大小告诉我们坡度到底有多陡。梯度也可以告诉我们一个数量在不是最快变化方向的其他方向的变化速度。再次考虑山坡的例子。可以有条直接上山的路其坡度是最大的,则其坡度是梯度的大小。也可以有一条和上坡方向成一个角度的路,例如投影与水平面上的夹角为60°。则,若最陡的坡度是40%,这条路的坡度小一点,是20%,也就是40%乘以60°的余弦。这个现象可以如下数学的表示。山的高度函数
H
{displaystyle H}
的梯度点积一个单位向量给出了表面在该向量的方向上的斜率。这称为方向导数。标量函数
f
:
R
n
↦
R
{displaystyle fcolon mathbb {R} ^{n}mapsto mathbb {R} }
的梯度表示为:
∇
f
{displaystyle nabla f}
或
grad
f
{displaystyle operatorname {grad} f}
,其中
∇
{displaystyle nabla }
(nabla)表示向量微分算子。函数
f
{displaystyle f}
的梯度,
∇
f
{displaystyle nabla f}
, 为向量场且对任意单位向量 v 满足下列方程:∇
f
{displaystyle nabla f}
在三维直角坐标系中表示为i, j, k 为标准的单位向量,分别指向 x, y 跟 z 坐标的方向。
(参看偏导数和向量。)虽然使用坐标表达,但结果是在正交变换下不变,从几何的观点来看,这是应该的。举例来讲,函数
f
(
x
,
y
,
z
)
=
2
x
+
3
y
2
−
sin
(
z
)
{displaystyle f(x,y,z)=2x+3y^{2}-sin(z)}
的梯度为:在圆柱坐标系中,
f
{displaystyle f}
的梯度为:ρ 是 P 点与 z-轴的垂直距离。
φ 是线 OP 在 xy-面的投影线与正 x-轴之间的夹角。
z 与直角坐标的
z
{displaystyle z}
等值。
eρ, eφ 跟 ez
为单位向量,指向坐标的方向。在球坐标系中:其中θ为极角,φ方位角。相对于n×1向量x的梯度算子记作
∇
x
{displaystyle nabla _{boldsymbol {x}}}
,定义为以n×1实向量x为变元的实标量函数f(x)相对于x的梯度为一n×1列向量x,定义为m维行向量函数
f
(
x
)
=
[
f
1
(
x
)
,
f
2
(
x
)
,
⋯
,
f
m
(
x
)
]
{displaystyle {boldsymbol {f}}({boldsymbol {x}})=}
相对于n维实向量x的梯度为一n×m矩阵,定义为实标量函数
f
(
A
)
{displaystyle {boldsymbol {f}}({boldsymbol {A}})}
相对于m×n实矩阵A的梯度为一m×n矩阵,简称梯度矩阵,定义为以下法则适用于实标量函数对向量的梯度以及对矩阵的梯度。一个黎曼流形
M
{displaystyle M}
上的对于任意可微函数
f
{displaystyle f}
的梯度
∇
f
{displaystyle nabla f}
是一个向量场,使得对于每个向量
ξ
{displaystyle xi }
,其中
⟨
⋅
,
⋅
⟩
{displaystyle langle cdot ,cdot rangle }
代表
M
{displaystyle M}
上的内积(度量)而
ξ
f
(
p
)
,
p
∈
M
{displaystyle xi f(p),pin M}
是
f
{displaystyle f}
在点
p
{displaystyle p}
,方向为
ξ
(
p
)
{displaystyle xi (p)}
的方向导数。换句话说,如果
φ
:
U
⊆
M
↦
R
n
{displaystyle varphi :Usubseteq Mmapsto mathbb {R} ^{n}}
为
p
{displaystyle p}
附近的局部坐标,在此坐标下有
ξ
(
x
)
=
∑
j
a
j
(
x
)
∂
∂
x
j
{displaystyle xi (x)=sum _{j}a_{j}(x){frac {partial }{partial x_{j}}}}
,则
ξ
f
(
p
)
{displaystyle xi f(p)}
将成为:函数的梯度和外微分相关,因为
ξ
f
=
d
f
(
ξ
)
{displaystyle xi f=df(xi )}
,实际上内积容许我们可以用一种标准的方式将1-形式
d
f
{displaystyle df}
和向量场
∇
f
{displaystyle nabla f}
建立联系。由
∇
f
{displaystyle nabla f}
的定义,
d
f
(
ξ
)
=
⟨
∇
f
,
ξ
⟩
{displaystyle df(xi )=langle nabla f,xi rangle }
,这样
f
{displaystyle f}
的梯度可以"等同"于0-形式的外微分
d
f
{displaystyle df}
,这里"等同"意味着:两集合
{
d
f
}
{displaystyle {df}}
和
{
∇
f
}
{displaystyle {nabla f}}
之间有1对1的满射。由定义可算流形上
∇
f
{displaystyle nabla f}
的局部坐标表达式为:请注意这是流形上对黎曼度量
d
s
2
=
∑
i
j
g
i
j
d
x
i
d
x
j
{displaystyle ds^{2}=sum _{ij}g_{ij}dx^{i}dx^{j}}
的公式,跟
R
n
{displaystyle mathbb {R} ^{n}}
里直角坐标的公式不同。常常我们写时会省略求和
∑
{displaystyle sum }
符号,不过为了避免混淆,在这里的公式还是加上去了。
相关
- 微孢子虫门微孢子虫(学名:Microsporidia)为罗兹菌门下的一纲。它是由孢子形成的单细胞寄生虫。目前多于一百万种微孢子虫中的1500种版命名。微孢子虫只能寄生于动物宿主。大部分的动物物
- 听觉皮层初级听觉皮层是颞叶的一部分,在人类和其它脊椎动物中发挥处理听觉信息的功能。作为听觉系统的一部分,初级听觉皮层在听觉通路中执行基本的和更为高级的功能。它位于颞叶的两侧
- 数有的语言中,名词、代词、形容词、动词有数的范畴。大部分区分数的语言中,一般只有单数和复数,而一些语言中亦有双数(例如阿拉伯语和古希腊语等)、三数(例如多罗马科语)、微数(Paucal
- 烟熏熏或烟薰是一种烹调、保存及为食物调味的方法。中西方的熏法各有不同。西方会把食物放在挂起或放在架上,下方多为慢燃炭木,让食物被烟薰一段时间,部分同时伴以香草调味。中式将
- 自称中国小中华思想是一种由中华思想派生而来的,指中华文化圈中政治制度与语言不同于汉族的民族或国家,自认也是中华的意识:59,朝鲜半岛:59、越南:120、日本:109,111-112等古代东亚各国
- 梅 宏梅宏(1963年5月-),生于贵州余庆,原籍重庆,中国计算机软件专家,北京大学教授。1984和1987年分别于南京航空学院获学士和硕士学位,1992年于上海交通大学获博士学位,1994年从北京大学博
- 凿凿子是一种具有尖端的工具,通常搭配槌子使用,用以雕刻或挖削硬质材料如木材、岩石、金属。使用时一般单手握凿,另一手持槌,将施力借由更小的接触面积转化为强大的压力破坏物体表
- 卡拉奇卡拉奇(乌尔都语:كراچى,信德语:ڪراچي)位于印度河三角洲西北部,濒临阿拉伯海;面积3527平方公里,总人口近1500万。2013年4月“世界城市区域研究”(Demographia World Urban A
- 印地安人美洲原住民,是对美洲所有原住民的总称。美洲原住民中的绝大多数为印第安人,剩下的则是主要位于北美洲北部的因纽特人。美洲原住民属于东亚人种美洲支系,与现代东亚人有共同的祖
- 河北2019冠状病毒病河北省疫情,介绍在2019冠状病毒病疫情中,在中华人民共和国河北省发生的情况。截至2020年月21日24时,河北省现有确诊病例3例(其中重症病例2例),累计治愈出院病例310