克喇末-克勒尼希关系

✍ dations ◷ 2025-04-04 11:15:02 #复分析

克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。

给定一复数变数 ω {\displaystyle \omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {\displaystyle {\chi (\omega )}=\chi _{1}(\omega )+i\chi _{2}(\omega )} ,其中 χ 1 {\displaystyle \chi _{1}} χ 2 {\displaystyle \chi _{2}} 是实值函数。假设此函数 χ ( ω ) {\displaystyle \chi (\omega )} 在复数平面上半部可析,且当 | ω | {\displaystyle |\omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {\displaystyle 1/|\omega |} 快或与之相等,那么 χ ( ω ) {\displaystyle \chi (\omega )} 满足以下关系:

其中 P {\displaystyle {\mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。

推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 和实数 ω {\displaystyle \omega } 函数 χ ( ω ) ω ω {\displaystyle {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:

选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {\displaystyle |\omega |} 成正比,因此只要 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 消失比 1 / ω {\displaystyle {1}/{\omega ^{\prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:

以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:

分母里的虚数 i {\displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {\displaystyle \chi (\omega )} 分解成实部和虚部可轻易得到更早的公式。

可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t t ) {\displaystyle \chi (t-t^{\prime })} 概括系统对在时间 t {\displaystyle t^{\prime }} 的作用力 F ( t ) {\displaystyle F(t^{\prime })} 在另一时间 t {\displaystyle t} 的反应 P ( t ) {\displaystyle P(t)}

因为系统不能在施力前有任何反应因此当 t > t {\displaystyle t^{\prime }>t} χ ( t t ) = 0 {\displaystyle \chi (t-t^{\prime })=0} 。可以证明这因果关系意味着 χ ( τ ) {\displaystyle \chi (\tau )} 的傅立叶变换 χ ( ω ) {\displaystyle \chi (\omega )} ω {\displaystyle \omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {\displaystyle \omega } 很大时, χ ( ω ) {\displaystyle \chi (\omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 通常符合克喇末-克勒尼希关系式的前提条件。

反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。

上述函数的积分路径是从 {\displaystyle -\infty } {\displaystyle \infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {\displaystyle \chi (\omega )} 是实数变量 χ ( t t ) {\displaystyle \chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( ω ) = χ ( ω ) {\displaystyle \chi (-\omega )=\chi ^{*}(\omega )} χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 是频率 ω {\displaystyle \omega } 的偶函数,而 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} ω {\displaystyle \omega } 的奇函数。

根据该性质,积分可以从正负无穷区间约化为 [ 0 , ) {\displaystyle [0,\infty )} 的区间上。考虑实部 χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 的第一个关系,积分函数上下同乘 ω + ω {\displaystyle \omega '+\omega } 可得:

由于 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} 为奇函数,第二项为零,剩下的部分为

类似的推导亦可用于虚部:

该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • National Science Foundation国家科学基金会(英语:National Science Foundation,缩写为NSF),全称是美国国家自然科学基金会,是一个美国政府独立机构,由美国国会于1950年创立。该机构支持除医学领域外的科学和工
  • 霜冻酸奶冻酸奶是用酸奶,有时候用其他乳制品制成的冷冻甜点。它通常比冰淇淋酸,脂肪也比较少 (因为使用的是牛奶而不是奶油)。它跟牛奶冻 (近几年被称之为低脂肪或轻冰淇淋)和常见的霜淇淋
  • 双龙桥坐标:23°36′44″N 102°46′01″E / 23.61222°N 102.76694°E / 23.61222; 102.76694双龙桥亦称十七孔桥,位于云南省红河州建水县西庄镇南部,南盘江支流的泸江河与塌冲河交
  • 视网膜色素上皮视网膜色素层,或称视网膜色素上皮层(retinal pigment epithelium, RPE)是一层紧贴于视网膜感觉神经之外的色素细胞,并营响视网膜视觉细胞。它与其下的脉络膜和其上视网膜神经细
  • 契尔西切尔西(英语:Chelsea)是美国马萨诸塞州沙福克县的一个城市,位于波士顿东北。面积6.4平方千米,是该州面积最小的城市。根据美国2000年人口普查,人口35,080人。1624年白人开始殖民,17
  • RaSOsub4/sub硫酸镭是一种无机化合物,化学式为RaSO4,有强放射性。它难溶于水,溶度积为3.66×10-11。硫酸镭可以通过氢氧化镭和硫酸钠反应得到:
  • 厕筹厕筹,又称厕简、干屎橛,粤语称搅屎棍,为竹木制的薄片,古人在上厕所以后用来刮清污秽的用具。厕筹的使用在古代印度、中国、日本都有记载。例如:《毗尼母经》记载释迦牟尼指示比丘
  • 清硬颚近音是一种辅音,使用于一些口语中。国际音标写作⟨ j̊ ⟩。清硬颚近音在很多情况下能被视为清化闭前不圆唇元音的semivocalic版本(如),此二者几乎相同(英语:distinctive
  • 博科圣地博科圣地(豪萨语:Boko Haram‎‎,阿拉伯语:بوكو حرام‎),后更名成为伊斯兰国下属的“西非省”(ولاية غرب افريقية‎ Wilayat Garb Ifrqiya),原名致力传播先知
  • 巴库斯巴克科斯(拉丁语:Bacchus,希腊语:Βάκχος)是罗马神话中的酒神和植物神,相当于希腊神话中的狄俄倪索斯。希腊神狄俄倪索斯另有一名为巴克科斯·亚历山德鲁斯,在他被接纳入罗马