克喇末-克勒尼希关系

✍ dations ◷ 2025-11-08 07:10:31 #复分析

克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。

给定一复数变数 ω {\displaystyle \omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {\displaystyle {\chi (\omega )}=\chi _{1}(\omega )+i\chi _{2}(\omega )} ,其中 χ 1 {\displaystyle \chi _{1}} χ 2 {\displaystyle \chi _{2}} 是实值函数。假设此函数 χ ( ω ) {\displaystyle \chi (\omega )} 在复数平面上半部可析,且当 | ω | {\displaystyle |\omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {\displaystyle 1/|\omega |} 快或与之相等,那么 χ ( ω ) {\displaystyle \chi (\omega )} 满足以下关系:

其中 P {\displaystyle {\mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。

推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 和实数 ω {\displaystyle \omega } 函数 χ ( ω ) ω ω {\displaystyle {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:

选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {\displaystyle |\omega |} 成正比,因此只要 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 消失比 1 / ω {\displaystyle {1}/{\omega ^{\prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:

以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:

分母里的虚数 i {\displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {\displaystyle \chi (\omega )} 分解成实部和虚部可轻易得到更早的公式。

可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t t ) {\displaystyle \chi (t-t^{\prime })} 概括系统对在时间 t {\displaystyle t^{\prime }} 的作用力 F ( t ) {\displaystyle F(t^{\prime })} 在另一时间 t {\displaystyle t} 的反应 P ( t ) {\displaystyle P(t)}

因为系统不能在施力前有任何反应因此当 t > t {\displaystyle t^{\prime }>t} χ ( t t ) = 0 {\displaystyle \chi (t-t^{\prime })=0} 。可以证明这因果关系意味着 χ ( τ ) {\displaystyle \chi (\tau )} 的傅立叶变换 χ ( ω ) {\displaystyle \chi (\omega )} ω {\displaystyle \omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {\displaystyle \omega } 很大时, χ ( ω ) {\displaystyle \chi (\omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 通常符合克喇末-克勒尼希关系式的前提条件。

反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。

上述函数的积分路径是从 {\displaystyle -\infty } {\displaystyle \infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {\displaystyle \chi (\omega )} 是实数变量 χ ( t t ) {\displaystyle \chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( ω ) = χ ( ω ) {\displaystyle \chi (-\omega )=\chi ^{*}(\omega )} χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 是频率 ω {\displaystyle \omega } 的偶函数,而 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} ω {\displaystyle \omega } 的奇函数。

根据该性质,积分可以从正负无穷区间约化为 [ 0 , ) {\displaystyle [0,\infty )} 的区间上。考虑实部 χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 的第一个关系,积分函数上下同乘 ω + ω {\displaystyle \omega '+\omega } 可得:

由于 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} 为奇函数,第二项为零,剩下的部分为

类似的推导亦可用于虚部:

该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 罗伯特·胡克罗伯特·胡克(英语:Robert Hooke,又译为虎克,1635年7月28日-1703年3月3日),英国博物学家、发明家。在物理学研究方面,他提出了描述材料弹性的基本定律——胡克定律,且提出了万有引力
  • 热对流对流传热,又称热对流,是传热的三种方式之一,是指由于流体的宏观运动而引起的流体各部分之间发生相对位移(对流),冷热流体相互掺混所引起的热量传递过程。对流传热可分为强迫对流和
  • 三宝佛三宝佛,可以指
  • 中欧关系中华人民共和国和欧洲联盟的外交关系建立于1975年。中欧关系一个争议的焦点便是欧盟对中国武器禁运。中欧关系始于1985年中欧“贸易与合作协议”。从2007年起,双方开始谈判提
  • 史卡莉·乔韩森斯嘉丽·英格丽·约翰逊(英语:Scarlett Ingrid Johansson,1984年11月22日-)是童星出身的美国女演员、歌手和模特,出生于美国纽约州纽约市。她的银幕处女作是1994年电影《浪子保镖(
  • 戈壁阿尔泰省戈壁阿尔泰省(蒙古语:Говь-Алтай аймаг,转写:Govi-Altai aimag),位于蒙古国西部,面积141,447 平方公里,人口53,590 (2011年)。首府阿尔泰 (蒙古)。
  • 昭和金融恐慌昭和金融危机是日本1927年3月昭和天皇在位时发生的经济危机。金融危机本是指一个抽象的经济现象,但在日本,若无特别说明,金融危机通常指代1927年发生的昭和金融危机。另外昭和
  • 伊邪那美景气伊邪那美景气(いざなみ景気)是日本2002年2月开始到2008年2月间一次经济缓步复纾的时期,但是此一时期能否称为“景气”经济学界争论很大,经济学人杂志认为这是一次少数资方经济复
  • 原嘉南大圳组合事务所原嘉南大圳组合事务所位于台南市中西区,是中华民国直辖市定古迹,为日治时期的末期之作。该建筑现在是嘉南农田水利会。在日本明治四十年(1907年)6月21日时台湾总督府便在土木局
  • 圣克鲁斯-德特内里费港圣克鲁斯-德特内里费港(西班牙语:Puerto de Santa Cruz de Tenerife)是西班牙圣克鲁斯-德特内里费的一个商业、客运、渔业和体育港口,位于加那利群岛。它是西班牙的主要港口之一