克喇末-克勒尼希关系

✍ dations ◷ 2025-09-19 10:14:56 #复分析

克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。

给定一复数变数 ω {\displaystyle \omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {\displaystyle {\chi (\omega )}=\chi _{1}(\omega )+i\chi _{2}(\omega )} ,其中 χ 1 {\displaystyle \chi _{1}} χ 2 {\displaystyle \chi _{2}} 是实值函数。假设此函数 χ ( ω ) {\displaystyle \chi (\omega )} 在复数平面上半部可析,且当 | ω | {\displaystyle |\omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {\displaystyle 1/|\omega |} 快或与之相等,那么 χ ( ω ) {\displaystyle \chi (\omega )} 满足以下关系:

其中 P {\displaystyle {\mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。

推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 和实数 ω {\displaystyle \omega } 函数 χ ( ω ) ω ω {\displaystyle {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:

选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {\displaystyle |\omega |} 成正比,因此只要 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 消失比 1 / ω {\displaystyle {1}/{\omega ^{\prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:

以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:

分母里的虚数 i {\displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {\displaystyle \chi (\omega )} 分解成实部和虚部可轻易得到更早的公式。

可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t t ) {\displaystyle \chi (t-t^{\prime })} 概括系统对在时间 t {\displaystyle t^{\prime }} 的作用力 F ( t ) {\displaystyle F(t^{\prime })} 在另一时间 t {\displaystyle t} 的反应 P ( t ) {\displaystyle P(t)}

因为系统不能在施力前有任何反应因此当 t > t {\displaystyle t^{\prime }>t} χ ( t t ) = 0 {\displaystyle \chi (t-t^{\prime })=0} 。可以证明这因果关系意味着 χ ( τ ) {\displaystyle \chi (\tau )} 的傅立叶变换 χ ( ω ) {\displaystyle \chi (\omega )} ω {\displaystyle \omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {\displaystyle \omega } 很大时, χ ( ω ) {\displaystyle \chi (\omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 通常符合克喇末-克勒尼希关系式的前提条件。

反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。

上述函数的积分路径是从 {\displaystyle -\infty } {\displaystyle \infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {\displaystyle \chi (\omega )} 是实数变量 χ ( t t ) {\displaystyle \chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( ω ) = χ ( ω ) {\displaystyle \chi (-\omega )=\chi ^{*}(\omega )} χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 是频率 ω {\displaystyle \omega } 的偶函数,而 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} ω {\displaystyle \omega } 的奇函数。

根据该性质,积分可以从正负无穷区间约化为 [ 0 , ) {\displaystyle [0,\infty )} 的区间上。考虑实部 χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 的第一个关系,积分函数上下同乘 ω + ω {\displaystyle \omega '+\omega } 可得:

由于 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} 为奇函数,第二项为零,剩下的部分为

类似的推导亦可用于虚部:

该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 弹道学弹道学(英语:ballistics)是一门研究抛射物飞行、受力及其它运动行为的应用物理学科。通过弹道学,子弹、炮弹、重力炸弹、火箭等非制导武器可以达到理想的状态。弹道学是兵器类专
  • 人类繁殖人类繁殖 是任何导致人体受精的有性生殖,通常带有一男一女的性交。 在性交过程中,男性生殖系统以及女性生殖系统的动作导致出女性的卵子和男性的精子的受精作用。 这些专门用
  • 酒店款待(Hospitality),是一个专有统称。源自5世纪前,英语的“Hospital”,意指尊重对方与自己的差异,为对方提供住宿、饮食与保护等,平等地对待病人。现在大多被人认为是尊重别人与自己
  • 寒流寒流可以指:
  • 末日审判伊斯兰教的末世论和伊斯兰教六大信仰有关。伊斯兰教和其他的亚伯拉罕诸教一样,都教导死后肉体复活、神创世的计划以及人类灵魂不灭等教义;义人将获得乐园(天堂)的欢乐,而恶人将在
  • 魏悦广魏悦广(1960年1月-)力学家,中国科学院院士,北京大学博雅讲席教授。1960年1月出生于陕西省渭南市。1982年1月毕业于西安科技大学,获力学学士学位;1986年7月毕业于中国矿业大学北京研
  • 条件概率本文定义了表征两个或者多个随机变量概率分布特点的术语。条件概率(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发
  • 酒依赖酒精依赖(英语:Alcohol dependence),又称酒精成瘾(Alcohol addiction)、酒瘾,对于含酒精饮料产生心理或生理上的依赖,造成的身心失衡证状。患者会无视于自己身上出现的各种失调,长期
  • HuHU、Hu或hu可以指:
  • 提乌德贝尔特二世提乌德贝尔特二世(Theudebert II)是墨洛温王朝的法兰克国王,奥斯特拉西亚国王(595年—612年在位)。奥斯特拉西亚及勃艮第国王希尔德贝尔特二世与妻子法伊洛贝(Faileube)的长子、勃