克喇末-克勒尼希关系

✍ dations ◷ 2025-08-16 01:27:41 #复分析

克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。

给定一复数变数 ω {\displaystyle \omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {\displaystyle {\chi (\omega )}=\chi _{1}(\omega )+i\chi _{2}(\omega )} ,其中 χ 1 {\displaystyle \chi _{1}} χ 2 {\displaystyle \chi _{2}} 是实值函数。假设此函数 χ ( ω ) {\displaystyle \chi (\omega )} 在复数平面上半部可析,且当 | ω | {\displaystyle |\omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {\displaystyle 1/|\omega |} 快或与之相等,那么 χ ( ω ) {\displaystyle \chi (\omega )} 满足以下关系:

其中 P {\displaystyle {\mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。

推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 和实数 ω {\displaystyle \omega } 函数 χ ( ω ) ω ω {\displaystyle {\frac {\chi (\omega ^{\prime })}{\omega ^{\prime }-\omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:

选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {\displaystyle |\omega |} 成正比,因此只要 χ ( ω ) {\displaystyle \chi (\omega ^{\prime })} 消失比 1 / ω {\displaystyle {1}/{\omega ^{\prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:

以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:

分母里的虚数 i {\displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {\displaystyle \chi (\omega )} 分解成实部和虚部可轻易得到更早的公式。

可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t t ) {\displaystyle \chi (t-t^{\prime })} 概括系统对在时间 t {\displaystyle t^{\prime }} 的作用力 F ( t ) {\displaystyle F(t^{\prime })} 在另一时间 t {\displaystyle t} 的反应 P ( t ) {\displaystyle P(t)}

因为系统不能在施力前有任何反应因此当 t > t {\displaystyle t^{\prime }>t} χ ( t t ) = 0 {\displaystyle \chi (t-t^{\prime })=0} 。可以证明这因果关系意味着 χ ( τ ) {\displaystyle \chi (\tau )} 的傅立叶变换 χ ( ω ) {\displaystyle \chi (\omega )} ω {\displaystyle \omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {\displaystyle \omega } 很大时, χ ( ω ) {\displaystyle \chi (\omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 通常符合克喇末-克勒尼希关系式的前提条件。

反应函数 χ ( ω ) {\displaystyle \chi (\omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。

上述函数的积分路径是从 {\displaystyle -\infty } {\displaystyle \infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {\displaystyle \chi (\omega )} 是实数变量 χ ( t t ) {\displaystyle \chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( ω ) = χ ( ω ) {\displaystyle \chi (-\omega )=\chi ^{*}(\omega )} χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 是频率 ω {\displaystyle \omega } 的偶函数,而 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} ω {\displaystyle \omega } 的奇函数。

根据该性质,积分可以从正负无穷区间约化为 [ 0 , ) {\displaystyle [0,\infty )} 的区间上。考虑实部 χ 1 ( ω ) {\displaystyle \chi _{1}(\omega )} 的第一个关系,积分函数上下同乘 ω + ω {\displaystyle \omega '+\omega } 可得:

由于 χ 2 ( ω ) {\displaystyle \chi _{2}(\omega )} 为奇函数,第二项为零,剩下的部分为

类似的推导亦可用于虚部:

该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 细菌性肺炎细菌性肺炎是一种细菌感染引起的肺炎类型。肺炎链球菌 (J13 )是在所有年龄组除了新生婴儿最常见的细菌 引起的肺炎。 肺炎链球菌是一个革兰氏阳性细菌也经常存在于没有肺炎
  • 腺苷脱氨酶缺乏症腺苷脱氨酶缺乏症(英语:Adenosine deaminase deficiency)缺乏症是一种体染色体隐性遗传疾病 ,会破坏免疫系统并导致严重复合型免疫缺乏症(SCID)。此病的病因是腺苷脱氨酶(ADA)缺乏导
  • 腰果腰果(学名:Anacardium occidentale)是一种肾形核果,属无患子目漆树科腰果属。又名树花生、槚如树、鸡腰果、介寿果,带有附果。长椭圆形革质单叶互生,全缘;黄色花,有淡红条纹,圆锥花序
  • 埃德温·萨尔皮特埃德温·欧内斯特·萨尔皮特,ForMemRS(英语:Edwin Ernest Salpeter,1924年12月3日-2008年11月26日),奥地利–澳大利亚–美国天体物理学家。
  • 日本莽草素日本莽草素具有高度的毒性,是由日本莽草萃取出的具有杀虫活性的物质。在日本使用于民俗疗法之中,但是食入时会导致死亡。症状会在食入后 1–6小时后发作,开始时是腹泻、呕吐和
  • 蒂塞利乌斯阿尔内·威廉·考林·蒂塞利乌斯(瑞典语:Arne Wilhelm Kaurin Tiselius,1902年8月10日-1971年10月29日),出生于斯德哥尔摩,瑞典化学家,1948年获诺贝尔化学奖。1971年逝世于乌普萨拉
  • 血管学血管学 (从希腊 ἀγγεῖον, angeīon, "血管"; 与-λογία, -logia) 是一门专门研究循环系统、淋巴系统相关疾病的科学,例如:动脉, 静脉与淋巴管的问题与疾病,在英国,比
  • 辛酸辛酸是八个碳的直链羧酸。常温下为无色油状液体。辛酸微溶于水,溶于多数有机溶剂。用于制染料、药物、防腐剂、杀菌剂等。不饱和脂肪酸
  • 叶状体叶状体是包括藻类、真菌及一些苔纲、地衣和黏菌亚纲有机体未分化的营养组织。这些生物原先统称叶状体植物。叶状体通常是一个多细胞的不移动的有机体的整体。 尽管叶状体植
  • 利息利息,指负债方为借债向债权人所付的补偿性费用。对于借债方来说,利息是借钱的代价;对于提供贷款或购买债券的投资者来说,利息可以部分抵消债务投资的信用风险和机会成本。利息主