分数

✍ dations ◷ 2025-09-19 05:17:43 #分数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }分数(fraction)是用分式(分数式)表达成 a b {displaystyle {frac {a}{b}}} 的数( a , b ∈ Z , b ≠ 0 {displaystyle a,bin Z,bneq 0} )。在上式之中, b {displaystyle b} 称为分母(Denominator)而 a {displaystyle a} 称为分子(Numerator),可视为某件事物平均分成 b {displaystyle b} 份中占 a {displaystyle a} 份,读作“ b {displaystyle b} 分之 a {displaystyle a} ”。中间的线称为分线或分数线。有时人们会用 a / b {displaystyle a/b} 来表示分数。分数有各种不同的用法与意义:这些概念在数学里都是相通的,只是在不同的使用场合中有其实际意义no分数如自然数般,跟从互联律、结合律、分配律和反除以零的规则。一个分数约分后或扩分后,其分数与原来之分数的值相等,称为等值分数。“约分”是将一个分数的分子和分母同除以一个比1大的整数(它们的公约数)。 约分后的分数和原来分数的值相等。“扩分”是将一个分数的分子和分母同乘以比1大的数。扩分后的分数和原来分数的值相等。“通分”是利用约分或扩分,将两个分母不同的分数,分别化为同分母的分数。笔算分数的加减法时,必须将分母用予倍的方法化成同一数字才能进行同级分数之和或差,这个过程称为“扩分”、“通分”、“通分母扩分子”等等,为了方便地求得所须分母,计算时一般以加数和被加数的最小公倍数作为新的分母。然后将事先倍大了的分子加上,合成和后再作约简。例如:分数乘法最晚在中国秦代即有,里耶秦简博物馆馆长彭成刚表示:里耶秦简秦朝“九九表”每枚木牍上竖写的数字连起来就是一个乘法运算,更为惊奇的是,中国当时还出现了分数乘法,例如二乘以二分之一等于一。分数的乘除无视分子母的特性,将分子和分母各自处理便可,但是由于整数除法亦容易引起小数,加上不适合出现于分数形式,而且除法也是乘法的逆函数,故此计算时一般将被除数化成其倒数,把除法改为乘法较为方便。例如:

相关

  • 电池电池,一般狭义上的定义是将本身储存的化学能转成电能的装置,广义的定义为将预先储存起的能量转化为可供外用电能的装置。因此,像太阳能电池只有转化而无储存功能的装置不算是电
  • 重复使力伤害重复使力伤害(英文:Repetitive strain injury,缩写:RSI),或称重复性劳损、劳肌损伤、重复性动作的伤害,是指因长时间重复使用某组肌肉造成的损害。吉他、打字、在装配线工作、某些
  • 后心肌梗塞症候群后心肌梗塞症候群(postmyocardial infarction syndrome),又称卓斯勒症候群(Dressler syndrome),是描述在心肌细胞或心包膜在受损后产生的后天性(英语:acquired)心包炎。常见症状包含
  • 死水死水又称滞水,为不流动的水体,水体之所在地没有流通的出入口。形成死水之地包括路边的小凹地、花园中的泥泞,甚至人工制造的器皿皆能形成死水。严格来说,死海亦是死水的一种。死
  • 昔兰尼昔兰尼(Cyrene)(希腊文:Κυρήνη,阿拉伯文:شحات‎),《圣经和合本》中译作古利奈,是位于现利比亚境内的古希腊城市,为该地区五个希腊城市中之最古老和最重要的,利比亚东部因它而
  • 眼虫纲眼虫藻(学名:Euglena)是生物里的一个属,属于裸藻纲。其名字的来源是因为它们有眼斑,它与趋光有关。眼虫为长梭形或圆柱形而带扁平的单细胞藻体,由前端小凹陷生出细长鞭毛一条,其运
  • 常温常温也叫一般温度或者室温,通常定义为摄氏 25 度。有时会设为 300K(约 27°C),以利于使用绝对温度的计算。不同于标准状况,常温不一定指的是某个特定的温度。
  • 人工合成醋人工合成醋亦称醋精,醋精酸味大,刺激性强烈。色泽为透明,无香味,有一定的腐蚀作用。多用于大批量制作的食品生产。如泡菜、酸菜。
  • 自反性自反关系是在逻辑学和数学中一种特殊的二元关系,这样的二元关系被称为自反的,也被称为具有自反性。自反关系的一个例子是关于实数集合的“等于”关系,因为每个实数都等于它自己
  • 中原王朝中原王朝,通常是指历史上定都于中原的王朝。它既包含汉族在中原地区建立的王朝,也包含蒙古族和满族等其他非汉族定都于中原的王朝。中原王朝在学术上有两种定义:一则以中原文明