分数

✍ dations ◷ 2025-04-04 05:22:58 #分数
N ⊆ Z ⊆ Q ⊆ R ⊆ C {displaystyle mathbb {N} subseteq mathbb {Z} subseteq mathbb {Q} subseteq mathbb {R} subseteq mathbb {C} }正数 R + {displaystyle mathbb {R} ^{+}} 自然数 N {displaystyle mathbb {N} } 正整数 Z + {displaystyle mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {displaystyle mathbb {Q} } 代数数 A {displaystyle mathbb {A} } 实数 R {displaystyle mathbb {R} } 复数 C {displaystyle mathbb {C} } 高斯整数 Z [ i ] {displaystyle mathbb {Z} }负数 R − {displaystyle mathbb {R} ^{-}} 整数 Z {displaystyle mathbb {Z} } 负整数 Z − {displaystyle mathbb {Z} ^{-}} 分数 单位分数 二进分数 规矩数 无理数 超越数 虚数 I {displaystyle mathbb {I} } 二次无理数 艾森斯坦整数 Z [ ω ] {displaystyle mathbb {Z} }二元数 四元数 H {displaystyle mathbb {H} } 八元数 O {displaystyle mathbb {O} } 十六元数 S {displaystyle mathbb {S} } 超实数 ∗ R {displaystyle ^{*}mathbb {R} } 大实数 上超实数双曲复数 双复数 复四元数 共四元数(英语:Dual quaternion) 超复数 超数 超现实数素数 P {displaystyle mathbb {P} } 可计算数 基数 阿列夫数 同余 整数数列 公称值规矩数 可定义数 序数 超限数 '"`UNIQ--templatestyles-00000015-QINU`"' p进数 数学常数圆周率 π = 3.141592653 … {displaystyle pi =3.141592653dots } 自然对数的底 e = 2.718281828 … {displaystyle e=2.718281828dots } 虚数单位 i = − 1 {displaystyle i={sqrt {-1}}} 无穷大 ∞ {displaystyle infty }分数(fraction)是用分式(分数式)表达成 a b {displaystyle {frac {a}{b}}} 的数( a , b ∈ Z , b ≠ 0 {displaystyle a,bin Z,bneq 0} )。在上式之中, b {displaystyle b} 称为分母(Denominator)而 a {displaystyle a} 称为分子(Numerator),可视为某件事物平均分成 b {displaystyle b} 份中占 a {displaystyle a} 份,读作“ b {displaystyle b} 分之 a {displaystyle a} ”。中间的线称为分线或分数线。有时人们会用 a / b {displaystyle a/b} 来表示分数。分数有各种不同的用法与意义:这些概念在数学里都是相通的,只是在不同的使用场合中有其实际意义no分数如自然数般,跟从互联律、结合律、分配律和反除以零的规则。一个分数约分后或扩分后,其分数与原来之分数的值相等,称为等值分数。“约分”是将一个分数的分子和分母同除以一个比1大的整数(它们的公约数)。 约分后的分数和原来分数的值相等。“扩分”是将一个分数的分子和分母同乘以比1大的数。扩分后的分数和原来分数的值相等。“通分”是利用约分或扩分,将两个分母不同的分数,分别化为同分母的分数。笔算分数的加减法时,必须将分母用予倍的方法化成同一数字才能进行同级分数之和或差,这个过程称为“扩分”、“通分”、“通分母扩分子”等等,为了方便地求得所须分母,计算时一般以加数和被加数的最小公倍数作为新的分母。然后将事先倍大了的分子加上,合成和后再作约简。例如:分数乘法最晚在中国秦代即有,里耶秦简博物馆馆长彭成刚表示:里耶秦简秦朝“九九表”每枚木牍上竖写的数字连起来就是一个乘法运算,更为惊奇的是,中国当时还出现了分数乘法,例如二乘以二分之一等于一。分数的乘除无视分子母的特性,将分子和分母各自处理便可,但是由于整数除法亦容易引起小数,加上不适合出现于分数形式,而且除法也是乘法的逆函数,故此计算时一般将被除数化成其倒数,把除法改为乘法较为方便。例如:

相关

  • CD4细胞1CDH, 1CDI, 1CDJ, 1CDU, 1CDY, 1G9M, 1G9N, 1GC1, 1JL4, 1Q68, 1RZJ, 1RZK, 1WBR, 1WIO, 1WIP, 1WIQ, 2B4C, 2JKR, 2JKT, 2KLU, 2NXY, 2NXZ, 2NY0, 2NY1, 2NY2, 2NY3, 2NY4
  • 分裂原丝裂原(英语:Mitogen,又称促分裂原、促细胞分裂剂)是促进细胞开始分裂,触发有丝分裂的化学物质,通常是蛋白质形式。
  • 会阴会阴(英文:perineum,拉丁文:perineum,huìyīn,又称CV1或RN1)是人体泌尿生殖系统中从生殖器到肛门的部位,主要是软组织构成,在针灸学是一个任脉穴。会阴的具体范围有不同的定义,有一种
  • 鲜奶鲜奶的标准有三条:第一,鲜奶的保存期限不超过7天,并且需要4℃冷藏保存;第二,鲜奶的包装形式主要采用新鲜屋包装和瓶装,以更好地保护乳品的新鲜品质和营养;第三,鲜奶通常采用巴氏杀菌
  • 对掌性手性,又称对掌性(英语:chirality、/kaɪˈrælɪtiː/)一词源于希腊语词干“手”χειρ(chir),在多种学科中表示一种重要的对称特点。如果某物体与其镜像不同,则其被称为“手性的(
  • 食肉动物肉食性动物是指主要吃肉类的动物,跟草食性动物相较下肉食性动物有较好的立体视觉,其双眼多集中向前。肉食动物也可以吃腐肉或吸血。哺乳纲食肉目的动物大都是肉食性动物,但也有
  • 斯蒂芬斯县斯蒂芬斯县(Stephens County, Georgia)是美国乔治亚州北部的一个县,东北邻南卡罗来纳州。面积477平方公里。根据美国2000年人口普查,共有人口25,435,2005年人口25,060人。县治托可
  • 欧尚欧尚(法语:Auchan)是法国量贩店集团公司,总部在克鲁瓦。2016年,欧尚共有774个大型超市、817个超级市场和337900个员工,遍布15个国家和地区。 2019年,欧尚零售在欧洲,亚洲和非洲的17
  • 裸露核糖核酸病毒裸露核糖核酸病毒(Naked RNA Viruses)是一类正链核糖核酸病毒。此类病毒的特点是没有衣壳, 自然宿主是真菌。至2015年为止共发现有7个物种,在裸露核糖核酸病毒科下分为两个属
  • 美制加仑加仑(Gallon)是英美度量衡的容量单位,从前以计量用汉字写作“嗧/