三角积分

✍ dations ◷ 2025-12-04 11:15:35 #三角学,特殊函数,特殊超几何函数,积分

三角积分是含有三角函数的一种积分。一些简单的含有三角函数的积分,可在三角函数积分表中找到。

有两种不同的正弦积分:

S i ( x ) {\displaystyle {\rm {Si}}(x)\,} sin x x {\displaystyle {\frac {\sin x}{x}}\,} 的原函数,当 x = 0 {\displaystyle x=0\,} 时为零; s i ( x ) {\displaystyle {\rm {si}}(x)\,} sin x x {\displaystyle {\frac {\sin x}{x}}\,} 的原函数,当 x = {\displaystyle x=\infty } 时为零。我们有:

注意到 sin t t {\displaystyle {\frac {\sin t}{t}}} 是sinc函数,也是第零个球贝塞尔函数。

有两种不同的余弦积分:

其中 γ {\displaystyle \gamma } 是欧拉-马斯刻若尼常数.

c i ( x ) {\displaystyle {\rm {ci}}(x)\,} cos x x {\displaystyle {\frac {\cos x}{x}}} 的原函数,当 x {\displaystyle x\to \infty } 时为零。我们有:

有各种各样的展开式,可以用于计算三角积分。

这些级数是发散的,但可以用来估计,甚至是精确计算三角积分。

这些级数对于任何复数的   x   {\displaystyle ~x~} 都是收敛的,但当 | x | 1 {\displaystyle |x|\gg 1} 时,计算非常缓慢,也不是很精确。

函数

称为指数积分,与正弦和余弦积分有以下的关系:

相关

  • 蛔虫蛔虫(学名:Ascaris lumbricoides)中文全名为似蚓蛔线虫,是一种常见的肠道寄生虫,也作“蚘虫”,属于线虫动物门,最长可达35 cm。蛔虫会导蛔虫病,属于被轻忽的热带疾病(英语:neglected
  • 超常现象超常现象(英语:Paranormal),又称灵异现象,是指与科学和常识相互矛盾的现象。因为超常现象无法用已存在的逻辑架构、或普遍被接受的现实知识来解释。这些真实性并未确定的现象,通常
  • 饶馀敏郡王阿巴泰阿巴泰(满语:ᠠᠪᠠᡨᠠᡳ,转写:Abatai;1589年-1646年),满洲正蓝旗人,清太祖努尔哈赤第七子。1589年六月十六出生,母侧妃伊尔根觉罗氏。初授台吉,履从征战,有战功。明万历三十九年(1611年
  • 友好城市基本资讯新北市辖下的市辖区中,板桥区(时为板桥市)与以下城市缔结姊妹市。桃园市各区与以下城市缔结姊妹市。国际友好城市国际姊妹市注释:
  • 圆叶目参见内文圆叶目(Cyclophyllidea)是绦虫纲下的一个目,该目下的物种主要营寄生。圆叶目下的寄生虫会对人畜的健康造成危害。圆叶目下有五个科,分别是:
  • 后弓兽后弓兽(学名),又名滑距兽,是一种长颈的南美洲的有蹄动物,属于滑距骨目。它有长的四肢,每肢上有三趾。最古老的化石可追溯至约7百万年前,而在约1万年前的更新世晚期便失去了化石纪录
  • 凤歌凤歌(1977年8月23日-),本名向麒钢,是一位中国武侠小说作家。1977年出生于重庆奉节,毕业于四川大学。2006年凭借《昆仑》获今古传奇暨黄易武侠文学一等奖,2007年成为《今古传奇·武
  • 五枚橘籽《五枚橘籽》是柯南·道尔所著的福尔摩斯探案的56个短篇故事之一,收录于《福尔摩斯办案记》。约翰·奥本萧先生的伯父及父亲收到一封写着K.K.K.的来函后,就不明所以死于意外,约
  • 迷你剧集迷你剧集(英语:miniseries 或 mini-series,在英国又称作serial),又分“电视连续短剧”、“网络连续短剧”两种,是在设定上集数甚少的连续性剧集。迷你剧集之下又衍生出“限定剧”(
  • 穿靴子的凯蒂的故事《穿靴子的凯蒂的故事》(英语:The Tale of Kitty-in-Boots)是英国童书作家碧雅翠丝·波特的遗作,于2016年出版,书中插图由昆丁·布雷克绘制。故事主角是一只名叫圣昆丁·凯瑟琳小