微分几何

✍ dations ◷ 2024-11-05 21:34:19 #微分几何
微分几何研究微分流形的几何性质,是现代数学中一主流;是广义相对论的基础,与拓扑学、代数几何及理论物理关系密切。古典微分几何起源于微积分,主要内容为曲线论和曲面论。欧拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。从一开始到19世纪中叶,微分几何是从外在观点来进行研究的:曲线和曲面是被放在更高维度的欧几里得空间中来考虑的(譬如曲面被放在三维的背景空间中)。其中的最简单的成果就是曲线微分几何中的结果。内在观点开始于黎曼的工作,在那里因为几何对象被认为是独立的给出的,所以不能说移到外面来考虑这个对象。内在的观点更加灵活,例如在相对论中时空不能很自然的用外在形式表示。但用内在的观点,曲率和联络这样的结构比较难定义一些,所以采用内在的观点也不是没有代价的。这两种观点也是可以融通的,即外在几何可以被看作是附加于内在几何上的结构。(见纳什嵌入定理)微分几何的工具也就是流形上的微积分:包括对于流形,切丛,余切丛,微分形式,外微分, p {displaystyle p} -形式在 p {displaystyle p} 维子流形上的积分以及斯托克斯定理,楔积,和李导数的研究。这些都和多变量微积分相关;但对于几何上的应用来讲,必须发展一种在某种意义上和特定坐标系无关的方法。微分几何的特殊概念可以说是那些体现几何本质的二阶导数:曲率的很多表现方式。可微流形是一个拓扑空间,它有一个开覆盖,其中的每个开集同胚于 R n {displaystyle R^{n}} 中的一个开单位球。并且,如果 f {displaystyle f} , g {displaystyle g} 是其中两个同胚映射,则函数 f − 1 ∘ g {displaystyle f^{-1}circ g} 无限可微。我们称一个函数无限可微,如果它和每个同胚的复合是从开球到 R {displaystyle R} 的无限可微函数。在流形的每一点,有一个该点的切空间,它由每个从该点离开进行运动的所有可能的速度(方向和大小)所组成。对一个n维流形,每点的切空间是一个n维向量空间,或者说是一个Rn。切空间有多种定义。其中一个是作为所有在该点取值为0的函数组成的线性空间的对偶空间,除以 所有取值为0并且一阶导数为0的函数空间(所得到的余空间)。导数为0可以定义为“和任何可微的从实数到该流形的函数的复合的导数为0”,因而只需要用到可微性。向量场是从流形到它的切空间的并集(切丛)的函数,在每一点所取的值是该点的切空间的一个元素。这样的映射称为纤维丛的截面。 向量场可微,如果该向量场应用到每个可微函数都得到一个可微函数。向量场可以看作是时不变的微分方程组。从实数到流形的可微函数是流形上的曲线。这给了一个从实数到切空间的函数:曲线上每点的速度。一条曲线称为一个向量场的一个解,如果曲线每点的速度和向量场在该点的值相等。交错k维线性形式是向量空间V的对偶空间V*的反对称k阶向量积的一个元素。k微分形式就是在流形的每一点选取一个这样的交错k形式--V在这里就是该点的切空间。如果它作用在k个可微向量场上的结果是流形上的一个可微函数,则称它可微。体积形式是维数和流形相同的微分形式。黎曼几何以黎曼流形为主要研究对象— 有额外结构的光滑流形,他们因此无穷小得看起来像欧几里得空间。这使得欧几里得几何的诸如函数的梯度,散度,曲线的长度等概念得到了推广;而无须假设空间整体上有这么对称。研究的对象是复流形。这是一类有着可积的近复结构的微分流形。因为非奇异的复代数簇自然的是复流形,因此与复代数几何有着紧密的联系。这是研究辛流形的学科。一个辛流形是带有辛形式(也就是,一个闭的非退化2-形式)的微分流形。这是辛几何在奇数维上的对应物。大致来说,在(2n+1)微流形上的切触结构是一个1-形式 α {displaystyle alpha } 使得 α ∧ ( d α ) n {displaystyle alpha wedge (dalpha )^{n}} 处处非退化。芬斯勒几何以芬斯勒流形为主要研究对象— 这是一个有芬斯勒度量的微分流形,也就是切空间被赋予了巴拿赫范数。芬斯勒度量是比黎曼度量一般得多的结构。

相关

  • 移植排斥移植排斥(英语:transplant rejection)是器官移植后的器官并不被受移植者身体接受的情况。一般来说这是因为免疫系统将移植器官视为异物,如同攻击病毒或细菌一样攻击移植器官所引
  • 高胱氨酸尿症高胱氨酸尿症(英语:Homocystinuria)是一种遗传病,其会导致体内堆积甲硫氨酸、高胱氨酸、高半胱氨酸及复合双硫化合物,造成智能不足、骨骼畸型、心脏血管疾病等。此遗传病的发生率
  • 高龄老年(英语:old age),一般指生物的生命周期一个阶段,即中年到死亡的一段时间不同的文化圈对于老年人有着不同的定义。由于生命的周期是一个渐变的过程,壮年到老年的分界线往往是很
  • 李伯元李宝嘉(1867年-1906年),字伯元,号南亭亭长,江苏武进人。三岁丧父,随母住堂伯父李翼清家。光绪十八年(1892年)翼清辞官,宝嘉随之由山东返回常州。少有才名,精于书画篆刻、金石音韵,又从传
  • 本体论本体论(英语:Ontology),又译存在论、存有论,是形而上学的基本分支,本体论主要探讨存有本身,即一切现实事物的基本特征。有的哲学家,如柏拉图学派认为:任何一个名词都对应着一个实际存
  • 志愿者志愿者(港澳称为义工,台湾称为志愿工作者),台湾简称志工,是指一种助人、具组织性及基于社会公益责任的参与行为,通常旨在促进善良或改善人类生活质量。其发展可追溯至二次大战后,福
  • 干冰干冰是二氧化碳的固体形式。在正常气压下,二氧化碳的凝固点是摄氏负78.5度,在保持物体维持冷冻或低温状态下非常有用。其无色、无味、不易燃、略带酸性。干冰的密度各不相同,但
  • Hsub2/subXeOsub4/sub氙酸(化学式:H2XeO4)由三氧化氙溶于水得到,是很强的氧化剂,用在有机合成中,易爆炸性分解为氙、氧气和臭氧。鲍林在1933年预测了氙酸的存在。
  • 马奶酒马奶酒,是一种用传统方法将马乳发酵制成的奶酒饮品。马奶酒广受居住于中亚干草原众多民族的喜爱,在游牧民族文化中占有重要的地位,包括:哈萨克人、巴什基尔人、卡尔梅克人、柯尔
  • 朗格克里斯蒂安·劳斯·朗格(挪威语:Christian Lous Lange,1869年9月17日-1938年12月11日),挪威人。1909年开始担任国际议会联盟秘书长,直到1913年退休。1921年他获得诺贝尔和平奖。