首页 >
微分几何
✍ dations ◷ 2025-11-21 00:38:06 #微分几何
微分几何研究微分流形的几何性质,是现代数学中一主流;是广义相对论的基础,与拓扑学、代数几何及理论物理关系密切。古典微分几何起源于微积分,主要内容为曲线论和曲面论。欧拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。从一开始到19世纪中叶,微分几何是从外在观点来进行研究的:曲线和曲面是被放在更高维度的欧几里得空间中来考虑的(譬如曲面被放在三维的背景空间中)。其中的最简单的成果就是曲线微分几何中的结果。内在观点开始于黎曼的工作,在那里因为几何对象被认为是独立的给出的,所以不能说移到外面来考虑这个对象。内在的观点更加灵活,例如在相对论中时空不能很自然的用外在形式表示。但用内在的观点,曲率和联络这样的结构比较难定义一些,所以采用内在的观点也不是没有代价的。这两种观点也是可以融通的,即外在几何可以被看作是附加于内在几何上的结构。(见纳什嵌入定理)微分几何的工具也就是流形上的微积分:包括对于流形,切丛,余切丛,微分形式,外微分,
p
{displaystyle p}
-形式在
p
{displaystyle p}
维子流形上的积分以及斯托克斯定理,楔积,和李导数的研究。这些都和多变量微积分相关;但对于几何上的应用来讲,必须发展一种在某种意义上和特定坐标系无关的方法。微分几何的特殊概念可以说是那些体现几何本质的二阶导数:曲率的很多表现方式。可微流形是一个拓扑空间,它有一个开覆盖,其中的每个开集同胚于
R
n
{displaystyle R^{n}}
中的一个开单位球。并且,如果
f
{displaystyle f}
,
g
{displaystyle g}
是其中两个同胚映射,则函数
f
−
1
∘
g
{displaystyle f^{-1}circ g}
无限可微。我们称一个函数无限可微,如果它和每个同胚的复合是从开球到
R
{displaystyle R}
的无限可微函数。在流形的每一点,有一个该点的切空间,它由每个从该点离开进行运动的所有可能的速度(方向和大小)所组成。对一个n维流形,每点的切空间是一个n维向量空间,或者说是一个Rn。切空间有多种定义。其中一个是作为所有在该点取值为0的函数组成的线性空间的对偶空间,除以
所有取值为0并且一阶导数为0的函数空间(所得到的余空间)。导数为0可以定义为“和任何可微的从实数到该流形的函数的复合的导数为0”,因而只需要用到可微性。向量场是从流形到它的切空间的并集(切丛)的函数,在每一点所取的值是该点的切空间的一个元素。这样的映射称为纤维丛的截面。
向量场可微,如果该向量场应用到每个可微函数都得到一个可微函数。向量场可以看作是时不变的微分方程组。从实数到流形的可微函数是流形上的曲线。这给了一个从实数到切空间的函数:曲线上每点的速度。一条曲线称为一个向量场的一个解,如果曲线每点的速度和向量场在该点的值相等。交错k维线性形式是向量空间V的对偶空间V*的反对称k阶向量积的一个元素。k微分形式就是在流形的每一点选取一个这样的交错k形式--V在这里就是该点的切空间。如果它作用在k个可微向量场上的结果是流形上的一个可微函数,则称它可微。体积形式是维数和流形相同的微分形式。黎曼几何以黎曼流形为主要研究对象— 有额外结构的光滑流形,他们因此无穷小得看起来像欧几里得空间。这使得欧几里得几何的诸如函数的梯度,散度,曲线的长度等概念得到了推广;而无须假设空间整体上有这么对称。研究的对象是复流形。这是一类有着可积的近复结构的微分流形。因为非奇异的复代数簇自然的是复流形,因此与复代数几何有着紧密的联系。这是研究辛流形的学科。一个辛流形是带有辛形式(也就是,一个闭的非退化2-形式)的微分流形。这是辛几何在奇数维上的对应物。大致来说,在(2n+1)微流形上的切触结构是一个1-形式
α
{displaystyle alpha }
使得
α
∧
(
d
α
)
n
{displaystyle alpha wedge (dalpha )^{n}}
处处非退化。芬斯勒几何以芬斯勒流形为主要研究对象— 这是一个有芬斯勒度量的微分流形,也就是切空间被赋予了巴拿赫范数。芬斯勒度量是比黎曼度量一般得多的结构。
相关
- 沃斯堡沃斯堡(或译渥斯堡,英语:Fort Worth;又名福和市)是美国得克萨斯州的第六大城市,塔兰特县的首府。位于达拉斯以西30英里,并与之构成全美大都会区。根据2000年的人口统计,人口有534,69
- 俄罗斯俄罗斯国家图书馆位于俄罗斯圣彼得堡涅瓦大街,紧邻奥斯特罗夫斯基广场。至今已经有218年的历史,是俄罗斯帝国最古老的公共图书馆。目前是俄罗斯第二大图书馆(仅次于位于莫斯科
- 花瓣花瓣是花冠的一个组成部分。它是花被的内部组成部分,是花无性的一个组成部分。花被的内部一般分花瓣和花萼,但有些花的花瓣和花萼非常相似而难以分辨,甚至于形态上完全相同,这时
- 流纹岩流纹岩是一种喷出岩,是火山的酸性喷出岩石,其化学成分与花岗岩相同,由于形成时冷却速度较快使矿物来不及结晶,二氧化硅含量大于69%,其斑晶主要为正长石和石英组成,晶体形状为方形
- 碳化硅3.22 g/cm3碳化硅(英语:silicon carbide,carborundum),化学式SiC,俗称金刚砂,宝石名称钻髓,为硅与碳相键结而成的陶瓷状化合物,碳化硅在大自然以莫桑石这种稀罕的矿物的形式存在。自1
- 磷的同位素磷(原子量:30.973762(2))共有23个同位素,其中31P是稳定的,其他都具有放射性。30P是人类获得的第一种人工放射性同位素。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而
- 回归年回归年(tropical year),也称为太阳年(solar year),是由地球上观察,太阳平黄经变化360°,即太阳再回到黄道(在天球上太阳行进的轨道)上相同的点所经历的时间。相对于分点和至点,精确的时
- 吉里克一世邓加之子吉里克(中世纪盖尔语:Giric mac Dúngail;现代盖尔语:Griogair mac Dhunghail ;约832年出生于苏格兰,简称为吉里克王,或绰号运气之子)是皮克特人的王和阿尔巴国王(878年–889
- 英国宪法政治主题英国宪法(英语:Constitution of United Kingdom),是一系列规范英国政治体制的规则的统称。英国宪法不是一个单一的成文法律文件,而是几个世纪以来,通过制定法,判例,政治惯例
- Dess-Martin过氧碘试剂2-碘酰基苯甲酸(IBX)是典型的高价碘试剂,在有机合成中用作氧化剂,用于将醇氧化为醛。以邻碘苯甲酸、溴酸钾(或过一硫酸氢钾复合盐)和硫酸为原料制取。它在空气中稳定,可以长期保存
