微分几何

✍ dations ◷ 2025-12-08 02:36:41 #微分几何
微分几何研究微分流形的几何性质,是现代数学中一主流;是广义相对论的基础,与拓扑学、代数几何及理论物理关系密切。古典微分几何起源于微积分,主要内容为曲线论和曲面论。欧拉、蒙日和高斯被公认为古典微分几何的奠基人。近代微分几何的创始人是黎曼,他在1854年创立了黎曼几何(实际上黎曼提出的是芬斯勒几何),这成为近代微分几何的主要内容,并在相对论有极为重要的作用。埃利·嘉当和陈省身等人曾在微分几何领域做出极为杰出的贡献。从一开始到19世纪中叶,微分几何是从外在观点来进行研究的:曲线和曲面是被放在更高维度的欧几里得空间中来考虑的(譬如曲面被放在三维的背景空间中)。其中的最简单的成果就是曲线微分几何中的结果。内在观点开始于黎曼的工作,在那里因为几何对象被认为是独立的给出的,所以不能说移到外面来考虑这个对象。内在的观点更加灵活,例如在相对论中时空不能很自然的用外在形式表示。但用内在的观点,曲率和联络这样的结构比较难定义一些,所以采用内在的观点也不是没有代价的。这两种观点也是可以融通的,即外在几何可以被看作是附加于内在几何上的结构。(见纳什嵌入定理)微分几何的工具也就是流形上的微积分:包括对于流形,切丛,余切丛,微分形式,外微分, p {displaystyle p} -形式在 p {displaystyle p} 维子流形上的积分以及斯托克斯定理,楔积,和李导数的研究。这些都和多变量微积分相关;但对于几何上的应用来讲,必须发展一种在某种意义上和特定坐标系无关的方法。微分几何的特殊概念可以说是那些体现几何本质的二阶导数:曲率的很多表现方式。可微流形是一个拓扑空间,它有一个开覆盖,其中的每个开集同胚于 R n {displaystyle R^{n}} 中的一个开单位球。并且,如果 f {displaystyle f} , g {displaystyle g} 是其中两个同胚映射,则函数 f − 1 ∘ g {displaystyle f^{-1}circ g} 无限可微。我们称一个函数无限可微,如果它和每个同胚的复合是从开球到 R {displaystyle R} 的无限可微函数。在流形的每一点,有一个该点的切空间,它由每个从该点离开进行运动的所有可能的速度(方向和大小)所组成。对一个n维流形,每点的切空间是一个n维向量空间,或者说是一个Rn。切空间有多种定义。其中一个是作为所有在该点取值为0的函数组成的线性空间的对偶空间,除以 所有取值为0并且一阶导数为0的函数空间(所得到的余空间)。导数为0可以定义为“和任何可微的从实数到该流形的函数的复合的导数为0”,因而只需要用到可微性。向量场是从流形到它的切空间的并集(切丛)的函数,在每一点所取的值是该点的切空间的一个元素。这样的映射称为纤维丛的截面。 向量场可微,如果该向量场应用到每个可微函数都得到一个可微函数。向量场可以看作是时不变的微分方程组。从实数到流形的可微函数是流形上的曲线。这给了一个从实数到切空间的函数:曲线上每点的速度。一条曲线称为一个向量场的一个解,如果曲线每点的速度和向量场在该点的值相等。交错k维线性形式是向量空间V的对偶空间V*的反对称k阶向量积的一个元素。k微分形式就是在流形的每一点选取一个这样的交错k形式--V在这里就是该点的切空间。如果它作用在k个可微向量场上的结果是流形上的一个可微函数,则称它可微。体积形式是维数和流形相同的微分形式。黎曼几何以黎曼流形为主要研究对象— 有额外结构的光滑流形,他们因此无穷小得看起来像欧几里得空间。这使得欧几里得几何的诸如函数的梯度,散度,曲线的长度等概念得到了推广;而无须假设空间整体上有这么对称。研究的对象是复流形。这是一类有着可积的近复结构的微分流形。因为非奇异的复代数簇自然的是复流形,因此与复代数几何有着紧密的联系。这是研究辛流形的学科。一个辛流形是带有辛形式(也就是,一个闭的非退化2-形式)的微分流形。这是辛几何在奇数维上的对应物。大致来说,在(2n+1)微流形上的切触结构是一个1-形式 α {displaystyle alpha } 使得 α ∧ ( d α ) n {displaystyle alpha wedge (dalpha )^{n}} 处处非退化。芬斯勒几何以芬斯勒流形为主要研究对象— 这是一个有芬斯勒度量的微分流形,也就是切空间被赋予了巴拿赫范数。芬斯勒度量是比黎曼度量一般得多的结构。

相关

  • 脑细胞脑细胞(英语:Brain Cell)是构成脑的多种细胞的通称,目前最新科学期刊表示,脑细胞约有860亿个。脑细胞主要包括神经元和神经胶质细胞。神经元负责处理和储存与脑功能相关的信息。
  • 发酵发酵作用(英语:fermentation)有时也写作酦酵,其定义由使用场合的不同而不同。通常所说的发酵,多是指生物体对于有机物的某种分解过程。发酵是人类较早接触的一种生物化学反应,如今
  • 新德里新德里(又名纽德里,印地语:नई दिल्ली;英语:New Delhi)是印度的首都。位于印度西北部,座落在恒河支流亚穆纳河(又译:朱木拿河)西岸,东北紧连德里旧城(英语:Old Delhi)(沙贾汉纳巴德)
  • 代盖赫利耶省代盖赫利耶省(阿拉伯语:محافظة الدقهلية‎),是埃及二十九省之一,位于该国尼罗河三角洲东北部。首府曼苏拉。面积3,471平方公里,人口4,985,187人(2006年统计)。
  • 氯化氰氯化氰(Cyanogen chloride)是由氰与氯组成的无机化合物,容易凝结无色剧毒气体。氯化氰由氰化钠和氯气反应得到。氯化氰是一种毒性很强的气体,并曾一度提出用于化学战。它接触眼
  • 触觉触-压觉是触觉和压觉的统称。它们是皮肤受到触或压等机械刺激时所引起的感觉。两者在性质上类似。触点和压点在皮肤表面的分布密度以及大脑皮层对应的感受区域面积与该部位
  • 混血儿混血儿用于描述有不同人种、民族或国族背景的人。例如父母的肤色不同或父母为异族通婚,但是也有人用于称呼不同物种的动物之间的后代。在西方对不同种族与国家联姻产生的后代
  • 微卫星微卫星(英语:Microsatellite,亦称为简单重复序列(英语:Simple Sequence Repeats,SSRs)或短串联重复序列(英语:short tandem repeats,STRs))是多型性的一种类型。指两个或多个核苷酸重复
  • 缺电子缺电子分子或缺电子化合物,指分子中的价电子数少于其形成正常共价键所需电子数的化合物。 例如:在分子结构中含有多中心缺电子键的分子称为缺电子分子。缺电子分子是指中心原
  • 白里安阿里斯蒂德·白里安(Aristide Briand,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code20