森田等价

✍ dations ◷ 2025-10-15 18:08:12 #模论,环论,伴随函子,对偶理论

在抽象代数中,森田等价(Morita equivalence)是定义在环之间的一个等价关系,这个等价保持许多环论性质。以日本数学家森田纪一(英语:Kiiti Morita)命名,他在1958年定义了这个等价关系以及对偶性的一个类似概念。

通常通过研究环上的模来研究环本身,因为模可以看成环的表示。每个环有自然的在自己上的 R-模结构,其模作用定义为环中的乘法,所以通过模的进路更一般,能给出有用的信息。因此,我们经常通过研究环上的模范畴来研究环。

森田等价便采取这种观点,自然地定义环等价如果它们的模范畴是等价的。

两个环 与 称为森田等价如果 上的(左)模范畴 与 上的(左)模范畴 之间存在一个加性等价。

可以证明左模范畴等价当且仅当右模范畴是等价的。

等价可以刻画为:如果 F:R {\displaystyle \to } 与 :S {\displaystyle \to } 是加性(共变)函子,则 与 是等价的当且仅当存在一个平衡的 (,)-双模 使得 SR 是有限生成投射生成元与自然同构 F ( P R ) {\displaystyle F\cong (P\otimes _{R}-)} 与 是等价的环,那么

当且仅当 满足相应的性质。另外,我们有 Cen() 同构于 Cen(),这里 Cen 表示环的中心,以及 / 等价于 /,这里 表示雅各布森根。

但是,森田等价不是同构。可以找到不同构但为森田等价的两个环,不过极其困难。森田等价蕴含同构的一个重要特例是交换环的情形。

对任何 n > 0 {\displaystyle n>0} 的全矩阵环 n() 等价于 。注意这推广了由 Artin-Wedderburn 定理给出的单阿廷环的分类。为了看出这个等价,注意到如果 M {\displaystyle M} -模则 M n {\displaystyle M^{n}} -模到左 M n ( R ) {\displaystyle M_{n}(R)} -模 以及一个正整数 ,使得这个 M n ( R ) {\displaystyle M_{n}(R)} 通过上述方式得到的。

对任何从左 -模范畴到左 -模范畴的与直和交换的右正合函子 ,同调代数的一个定理指出存在一个 -双模 使得 自然等价于 E R {\displaystyle E\otimes _{R}-} 与 森田等价等且仅当存在双模 与 使得 M N R {\displaystyle M\otimes N\cong R} 以及 N M S {\displaystyle N\otimes M\cong S} 。此外, N Hom ( M , S ) {\displaystyle N\cong \operatorname {Hom} (M,S)}

与等价理论相对的是模范畴之间的对偶性理论,这时函子是反变的而不是共变的。这个理论,虽然形式上类似,但是却显著的不同,因为没有在任何环上的模范畴之间的对偶性,尽管可能对子范畴有对偶性存在。换句话说,因为无限维模一般不是自反的,对偶性理论更容易应用到诺特环上有限生成代数。也许不奇怪,上面的判据关于对偶性有一个类比,此时自然同构由 Hom 函子而不是张量函子给出。

森田等价也能对更复杂的结构定义,比如辛群胚与 C*-代数。在 C*-代数情形,需要一种更强的等价关系,称为强森田等价,因为额外的结构得到的结果在应用中非常有用。

如果两个环是森田等价的,则在相应的投射模范畴有一个诱导等价,这是因为森田等价保持正合序列(从而保持投射模)。因为一个环的代数 K-理论用环上的投射模范畴的神经的分类空间的同伦群定义(Quillen 进路),森田等价的环一定有同构的 K-群。

相关

  • 链霉菌链霉菌属也称链丝菌,是放线菌门一个大属,约有近千种。链丝菌好气,绝大部分腐生,其基质菌丝不断裂,气生菌丝分化成直的、弯曲的或螺旋状的孢子丝,成熟的孢子丝生成链状的分生孢子,故
  • 伤寒 (中医)伤寒或说伤寒病,出自中医学的范畴,有广义与狭义的区别。广义伤寒是一切外感热病的总称。狭义伤寒是外感风寒之邪,感而即发的疾病。太阳伤寒证脉证提纲:太阳伤寒证证治:
  • 高等工程技术学院坐标:45°29′43.08″N 73°33′46.44″W / 45.4953000°N 73.5629000°W / 45.4953000; -73.5629000高等工程技术学院(École de technologie supérieure,ÉTS)是位于加拿大魁
  • 壁细胞胃壁细胞((gastric) parietal cells)又称壁细胞、泌酸细胞,为分泌盐酸及内在因子之上皮细胞。这些细胞都位于胃之胃底(gastric fundus)衬里中之胃腺体(gastric glands)里。它们含
  • 伏尔加河流域伏尔加河(俄语:Волга,又译窝瓦河),位于俄罗斯西南部,全长3,692公里,是欧洲最长的河流,也是世界最长的内流河,流入里海。伏尔加河是欧洲流域最广以及流量最大的河流,流经欧洲俄罗
  • 格 (语法)格(拉丁语:casus,英语:case),格位,狭义上称为语法格,在格语法中称为表层格,是名词、代词、分词、数词或形容词等词类当中,反映其在短语、从句或句子中所起语法功能(英语:grammatical fun
  • 李孟熙李孟熙(英语:Quentin Lee,1971年-)是一名华裔北美导演。
  • 塞缪尔·柯尔特塞缪尔·柯尔特(英语:Samuel Colt,1814年7月19日-1862年1月10日)美国发明家和实业家,他是美国柯尔特制造公司(英语:Colt's Manufacturing Company)的创始人,他的发明使得左轮手枪进入
  • 陈师道陈师道(1053年-1101年),字履常,一字无己,别号后山居士,彭城(今江苏徐州)人,北宋诗人。 父陈琪,官至国子监博士通判绛州,陈琪亡后,遂家道中落。娶郭概之女为妻,师道穷到无力养家,妻女皆在岳
  • 赵慧深赵慧深 (1914年-1967年12月4日),女,四川宜宾人,中国话剧、电影艺术家。文革受难者。战前主要参加话剧演出,并出演过《马路天使》,是她唯一参演过的电影作品。曾任东北戏曲研究院研究