森田等价

✍ dations ◷ 2025-09-14 07:35:45 #模论,环论,伴随函子,对偶理论

在抽象代数中,森田等价(Morita equivalence)是定义在环之间的一个等价关系,这个等价保持许多环论性质。以日本数学家森田纪一(英语:Kiiti Morita)命名,他在1958年定义了这个等价关系以及对偶性的一个类似概念。

通常通过研究环上的模来研究环本身,因为模可以看成环的表示。每个环有自然的在自己上的 R-模结构,其模作用定义为环中的乘法,所以通过模的进路更一般,能给出有用的信息。因此,我们经常通过研究环上的模范畴来研究环。

森田等价便采取这种观点,自然地定义环等价如果它们的模范畴是等价的。

两个环 与 称为森田等价如果 上的(左)模范畴 与 上的(左)模范畴 之间存在一个加性等价。

可以证明左模范畴等价当且仅当右模范畴是等价的。

等价可以刻画为:如果 F:R {\displaystyle \to } 与 :S {\displaystyle \to } 是加性(共变)函子,则 与 是等价的当且仅当存在一个平衡的 (,)-双模 使得 SR 是有限生成投射生成元与自然同构 F ( P R ) {\displaystyle F\cong (P\otimes _{R}-)} 与 是等价的环,那么

当且仅当 满足相应的性质。另外,我们有 Cen() 同构于 Cen(),这里 Cen 表示环的中心,以及 / 等价于 /,这里 表示雅各布森根。

但是,森田等价不是同构。可以找到不同构但为森田等价的两个环,不过极其困难。森田等价蕴含同构的一个重要特例是交换环的情形。

对任何 n > 0 {\displaystyle n>0} 的全矩阵环 n() 等价于 。注意这推广了由 Artin-Wedderburn 定理给出的单阿廷环的分类。为了看出这个等价,注意到如果 M {\displaystyle M} -模则 M n {\displaystyle M^{n}} -模到左 M n ( R ) {\displaystyle M_{n}(R)} -模 以及一个正整数 ,使得这个 M n ( R ) {\displaystyle M_{n}(R)} 通过上述方式得到的。

对任何从左 -模范畴到左 -模范畴的与直和交换的右正合函子 ,同调代数的一个定理指出存在一个 -双模 使得 自然等价于 E R {\displaystyle E\otimes _{R}-} 与 森田等价等且仅当存在双模 与 使得 M N R {\displaystyle M\otimes N\cong R} 以及 N M S {\displaystyle N\otimes M\cong S} 。此外, N Hom ( M , S ) {\displaystyle N\cong \operatorname {Hom} (M,S)}

与等价理论相对的是模范畴之间的对偶性理论,这时函子是反变的而不是共变的。这个理论,虽然形式上类似,但是却显著的不同,因为没有在任何环上的模范畴之间的对偶性,尽管可能对子范畴有对偶性存在。换句话说,因为无限维模一般不是自反的,对偶性理论更容易应用到诺特环上有限生成代数。也许不奇怪,上面的判据关于对偶性有一个类比,此时自然同构由 Hom 函子而不是张量函子给出。

森田等价也能对更复杂的结构定义,比如辛群胚与 C*-代数。在 C*-代数情形,需要一种更强的等价关系,称为强森田等价,因为额外的结构得到的结果在应用中非常有用。

如果两个环是森田等价的,则在相应的投射模范畴有一个诱导等价,这是因为森田等价保持正合序列(从而保持投射模)。因为一个环的代数 K-理论用环上的投射模范畴的神经的分类空间的同伦群定义(Quillen 进路),森田等价的环一定有同构的 K-群。

相关

  • 马其顿阿吉德王朝陆军马其顿阿吉德王朝陆军,是古代马其顿王国阿吉德王朝的陆上武装力量,在马其顿腓力二世军事改革后首次在历史中展现出这股显赫的军事实力,并由他的儿子亚历山大大帝发扬光大,它被认
  • 结构细胞(英语:Cell)旧称䏭,是生物体结构和功能的基本单位。它是除了病毒之外所有具有完整生命力的生物的最小单位,也经常被称为生命的积木(病毒仅由DNA/RNA组成,并由蛋白质和脂肪包裹
  • 仁政四配颜回 · 孟子 · 曾参 · 孔伋日本藤原惺窝 · 林罗山 · 室鸠巢新井白石 · 雨森芳洲朝鲜薛聪 · 权近 · 吉再 · 安珦 · 李穑李滉 · 王仁 · 李齐贤 
  • 哥伦比亚大学诺贝尔奖由瑞典皇家科学院、瑞典学院、卡罗琳学院和挪威诺贝尔委员会每年颁发一次,分别授予在化学、物理学、文学、和平、生理学或医学和经济学领域作出杰出贡献的人士。每个
  • 脊髓性脑膜炎脑膜炎(英语:meningitis)指发生于脑膜的急性炎症,脑膜是包裹大脑和脊髓的保护薄膜。脑膜炎最常见的症状是发热、头痛和颈部僵硬。其他症状还包含精神错乱(英语:mental confusion)或
  • 中国火山列表中国地域辽阔,境内的火山分布较广,但现代火山喷发较少,火山主要分布在东北、西南和东南沿海地区。
  • 硫酸钪硫酸钪是一种无机化合物,化学式为Sc2(SO4)3。硫酸钪可以通过蒸发硫酸和硝酸钪的混合物得到。钪、氧化钪或氢氧化钪和稀硫酸反应,也能制得硫酸钪:硫酸钪是无色晶体,易溶于水。然
  • 能隙能隙(band gap或energy gap)也译作能带隙(energy band gap)、禁带宽度(width of forbidden band),在固体物理学中泛指半导体或绝缘体的价带顶端至传导带底端的能量差距。对一个本征
  • 卡西姆·里米卡西姆·里米(阿拉伯语:قاسم الريمي‎,1978年6月5日-2020年1月29日)是阿拉伯半岛基地组织的埃米尔。卡西姆·里米于1990年代加入基地组织,在9.11恐袭前卡西姆·里米就在
  • 辻月丹辻 月丹(つじ げったん 1648年(庆安元年) - 1727年7月31日(享保12年6月13日))、江戸时代剣客。无外流流祖。讳资茂(すけもち)。前名兵内。号无外、后月丹。