H I J C F K 设已有链队列类型LinkQueue的定义及基本操作(参见队列)。 清空或销毁一个树也是同样的操作 void ClearTree(PTree *T){ T->n = 0;}构造树void CreateTree(PTree *T){ LinkQueue q; QElemType p,qq; int i=1,j,l; char c; /* 临时存放孩子节点数组 */ InitQueue(&q); /* 初始化队列 */ printf("请输入根节点(字符型,空格为空): "); scanf("%c%*c",&T->nodes.data); /* 根节点序号为0,%*c吃掉回车符 */ if(T->nodes.data!=Nil) /* 非空树 */ { T->nodes.parent=-1 ; /* 根节点无父节点 */ qq.name=T->nodes.data; qq.num=0; EnQueue(&q,qq); /* 入队此节点 */ while(i<MAX_TREE_SIZE&&!QueueEmpty(q)) /* 数组未满且队不空 */ { DeQueue(&q,&qq); /* 节点加入队列 */ printf("请按长幼顺序输入节点%c的所有孩子: ",qq.name); gets(c); l=strlen(c); for(j=0;j<l;j++) { T->nodes.data=c; T->nodes.parent=qq.num; p.name=c; p.num=i; EnQueue(&q,p); /* 入队此节点 */ i++; } } if(i>MAX_TREE_SIZE) { printf("节点数超过数组容量\n"); exit(OVERFLOW); } T->n=i; } else T->n=0;}判断树是否为空Status TreeEmpty(PTree *T){ /* 初始条件:树T存在。操作结果:若T为空树,则返回TRUE,否则返回FALSE */ return T->n==0;}获取树的深度int TreeDepth(PTree *T){ /* 初始条件:树T存在。操作结果:返回T的深度 */ int k,m,def,max=0; for(k=0;k<T->n;++k) { def=1; /* 初始化本节点的深度 */ m=T->nodes.parent; while(m!=-1) { m=T->nodes.parent; def++; } if(max<def) max=def; } return max; /* 最大深度 */}获取根节点TElemType Root(PTree *T){ /* 初始条件:树T存在。操作结果:返回T的根 */ int i; for(i=0;i<T->n;i++) if(T->nodes.parent<0) return T->nodes.data; return Nil;}获取第i个节点的值TElemType Value(PTree *T,int i){ /* 初始条件:树T存在,i是树T中节点的序号。操作结果:返回第i个节点的值 */ if(i<T->n) return T->nodes.data; else return Nil;}改变节点的值Status Assign(PTree *T,TElemType cur_e,TElemType value){ /* 初始条件:树T存在,cur_e是树T中节点的值。操作结果:改cur_e为value */ int j; for(j=0;j<T->n;j++) { if(T->nodes.data==cur_e) { T->nodes.data=value; return OK; } } return ERROR;}获取节点的父节点TElemType Parent(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e是T的非根节点,则返回它的父节点,否则函数值为"空"*/ int j; for(j=1;j<T->n;j++) /* 根节点序号为0 */ if(T->nodes.data==cur_e) return T->nodes.parent].data; return Nil;}获取节点的最左孩子节点TElemType LeftChild(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e是T的非叶子节点,则返回它的最左孩子,否则返回"空"*/ int i,j; for(i=0;i<T->n;i++) if(T->nodes.data==cur_e) /* 找到cur_e,其序号为i */ break; for(j=i+1;j<T->n;j++) /* 根据树的构造函数,孩子的序号>其父节点的序号 */ if(T->nodes.parent==i) /* 根据树的构造函数,最左孩子(长子)的序号<其它孩子的序号 */ return T->nodes.data; return Nil;}获取节点的右兄弟节点TElemType RightSibling(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e有右(下一个)兄弟,则返回它的右兄弟,否则返回"空"*/ int i; for(i=0;i<T->n;i++) if(T->nodes.data==cur_e) /* 找到cur_e,其序号为i */ break; if(T->nodes.parent==T->nodes.parent) /* 根据树的构造函数,若cur_e有右兄弟的话则右兄弟紧接其后 */ return T->nodes.data; return Nil;}输出树void Print(PTree *T){ /* 输出树T。加 */ int i; printf("节点个数=%d\n",T->n); printf(" 节点 父节点\n"); for(i=0;i<T->n;i++) { printf(" %c",Value(T,i)); /* 节点 */ if(T->nodes.parent>=0) /* 有父节点 */ printf(" %c",Value(T,T->nodes.parent)); /* 父节点 */ printf("\n"); }}向树中插入另一棵树Status InsertChild(PTree *T,TElemType p,int i,PTree c){ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度+1,非空树c与T不相交 */ /* 操作结果:插入c为T中p节点的第i棵子树 */ int j,k,l,f=1,n=0; /* 设交换标志f的初值为1,p的孩子数n的初值为0 */ PTNode t; if(!TreeEmpty(T)) /* T不空 */ { for(j=0;j<T->n;j++) /* 在T中找p的序号 */ if(T->nodes.data==p) /* p的序号为j */ break; l=j+1; /* 如果c是p的第1棵子树,则插在j+1处 */ if(i>1) /* c不是p的第1棵子树 */ { for(k=j+1;k<T->n;k++) /* 从j+1开始找p的前i-1个孩子 */ if(T->nodes.parent==j) /* 当前节点是p的孩子 */ { n++; /* 孩子数加1 */ if(n==i-1) /* 找到p的第i-1个孩子,其序号为k1 */ break; } l=k+1; /* c插在k+1处 */ } /* p的序号为j,c插在l处 */ if(l<T->n) /* 插入点l不在最后 */ for(k=T->n-1;k>=l;k--) /* 依次将序号l以后的节点向后移c.n个位置 */ { T->nodes=T->nodes; if(T->nodes.parent>=l) T->nodes.parent+=c.n; } for(k=0;k<c.n;k++) { T->nodes.data=c.nodes.data; /* 依次将树c的所有节点插于此处 */ T->nodes.parent=c.nodes.parent+l; } T->nodes.parent=j; /* 树c的根节点的父节点为p */ T->n+=c.n; /* 树T的节点数加c.n个 */ while(f) { /* 从插入点之后,将节点仍按层序排列 */ f=0; /* 交换标志置0 */ for(j=l;j<T->n-1;j++) if(T->nodes.parent>T->nodes.parent) {/* 如果节点j的父节点排在节点j+1的父节点之后(树没有按层序排列),交换两节点*/ t=T->nodes; T->nodes=T->nodes; T->nodes=t; f=1; /* 交换标志置1 */ for(k=j;k<T->n;k++) /* 改变父节点序号 */ if(T->nodes.parent==j) T->nodes.parent++; /* 父节点序号改为j+1 */ else if(T->nodes.parent==j+1) T->nodes.parent--; /* 父节点序号改为j */ } } return OK; } else /* 树T不存在 */ return ERROR;}删除子树Status deleted; /* 删除标志数组(全局量) */void DeleteChild(PTree *T,TElemType p,int i){ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度 */ /* 操作结果:删除T中节点p的第i棵子树 */ int j,k,n=0; LinkQueue q; QElemType pq,qq; for(j=0;j<=T->n;j++) deleted=0; /* 置初值为0(不删除标记) */ pq.name='a'; /* 此成员不用 */ InitQueue(&q); /* 初始化队列 */ for(j=0;j<T->n;j++) if(T->nodes.data==p) break; /* j为节点p的序号 */ for(k=j+1;k<T->n;k++) { if(T->nodes.parent==j) n++; if(n==i) break; /* k为p的第i棵子树节点的序号 */ } if(k<T->n) /* p的第i棵子树节点存在 */ { n=0; pq.num=k; deleted=1; /* 置删除标记 */ n++; EnQueue(&q,pq); while(!QueueEmpty(q)) { DeQueue(&q,&qq); for(j=qq.num+1;j<T->n;j++) if(T->nodes.parent==qq.num) { pq.num=j; deleted=1; /* 置删除标记 */ n++; EnQueue(&q,pq); } } for(j=0;j<T->n;j++) if(deleted==1) { for(k=j+1;k<=T->n;k++) { deleted=deleted; T->nodes=T->nodes; if(T->nodes.parent>j) T->nodes.parent--; } j--; } T->n-=n; /* n为待删除节点数 */ }}层序遍历树void TraverseTree(PTree *T,void(*Visit)(TElemType)){ /* 初始条件:二叉树T存在,Visit是对节点操作的应用函数 */ /* 操作结果:层序遍历树T,对每个节点调用函数Visit一次且仅一次 */ int i; for(i=0;i<T->n;i++) Visit(T->nodes.data); printf("\n");}孩子链表表示法存储结构/*树的孩子链表存储表示*/typedef struct CTNode { // 孩子节点 int child; struct CTNode *next;} *ChildPtr;typedef struct { ElemType data; // 节点的数据元素 ChildPtr firstchild; // 孩子链表头指针} CTBox;typedef struct { CTBox nodes; int n, r; // 节点数和根节点的位置} CTree;
H I J C F K 见二叉树相应章节
相关- β受体阻断剂β受体阻断药(英语:Beta blockers),又称Beta受体阻断药、β受体阻断剂、β受体阻滞剂、β受体拮抗剂或β阻断药、乙型阻断剂,是一类用来治疗心律不齐、防止心脏病发作后的二次心
- 西咪替丁西咪替丁(INN:cimetidine),也称甲氰咪胍、西米替丁或希美得定,商品名称为泰胃美(Tagamet),是一种组胺H2受体阻抗剂,主要用于抑制胃酸的分泌,并用于治疗胃灼热和消化道溃疡。在英国,西咪
- 暴食症神经性暴食症(英语:Bulimia nervosa)又译心因性暴食症或者神经性贪食症,一般简称为暴食症,是一种进食障碍,其特征为患者会尝试在暴饮暴食(英语:Binge eating)后试图进行净空行为。暴
- 国防军战争罪行德国政府曾在第二次世界大战之中组织并下令进行了多项战争犯罪行为。二战当中,纳粹德国政府实行的种族屠杀导致六百万犹太人死亡。大屠杀为其中最为知名的例子,与此同时也有数
- 铟的同位素铟(原子量:114.818)共有86个同位素,其中有1个同位素是稳定的。备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性。
- 线程线程(英语:thread)是操作系统能够进行运算调度的最小单位。大部分情况下,它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以
- 存储控制器存储控制器,CPU控制单元中,负责容纳微程序的存储设备的一种。存储控制器,多作为可在微处理器中排列二极管的只读存储器装机使用。其起源至少可以追溯到1947年旋风计算机所使用
- 2ES4K型电力机车2ES4K型“顿河种马”电力机车(俄语:2ЭС4К «Дончак»)是俄罗斯铁路和乌克兰铁路的新型干线电力机车车型之一,适用于供电制式为3000伏直流电的电气化铁路,由俄罗斯运输机
- 戴维·李 (物理学家)戴维·莫里斯·李(英语:David Morris Lee, 1931年1月20日-),纽约州拉伊),美国物理学家,1996年,因为发现了在氦-3里的超流动性,与道格拉斯·奥谢罗夫、罗伯特·理查森共同荣获诺贝尔物
- 游戏基地游戏基地(Gamebase)是一个以电玩信息为主的中文网站及门户网站,由电脑玩家文化事业股份有限公司创立,于2000年11月16日正式上线运作,2007年8月被母公司城邦文化收购于旗下网络社
|