H I J C F K 设已有链队列类型LinkQueue的定义及基本操作(参见队列)。 清空或销毁一个树也是同样的操作 void ClearTree(PTree *T){ T->n = 0;} 构造树void CreateTree(PTree *T){ LinkQueue q; QElemType p,qq; int i=1,j,l; char c; /* 临时存放孩子节点数组 */ InitQueue(&q); /* 初始化队列 */ printf("请输入根节点(字符型,空格为空): "); scanf("%c%*c",&T->nodes.data); /* 根节点序号为0,%*c吃掉回车符 */ if(T->nodes.data!=Nil) /* 非空树 */ { T->nodes.parent=-1 ; /* 根节点无父节点 */ qq.name=T->nodes.data; qq.num=0; EnQueue(&q,qq); /* 入队此节点 */ while(i<MAX_TREE_SIZE&&!QueueEmpty(q)) /* 数组未满且队不空 */ { DeQueue(&q,&qq); /* 节点加入队列 */ printf("请按长幼顺序输入节点%c的所有孩子: ",qq.name); gets(c); l=strlen(c); for(j=0;j<l;j++) { T->nodes.data=c; T->nodes.parent=qq.num; p.name=c; p.num=i; EnQueue(&q,p); /* 入队此节点 */ i++; } } if(i>MAX_TREE_SIZE) { printf("节点数超过数组容量\n"); exit(OVERFLOW); } T->n=i; } else T->n=0;} 判断树是否为空Status TreeEmpty(PTree *T){ /* 初始条件:树T存在。操作结果:若T为空树,则返回TRUE,否则返回FALSE */ return T->n==0;} 获取树的深度int TreeDepth(PTree *T){ /* 初始条件:树T存在。操作结果:返回T的深度 */ int k,m,def,max=0; for(k=0;k<T->n;++k) { def=1; /* 初始化本节点的深度 */ m=T->nodes.parent; while(m!=-1) { m=T->nodes.parent; def++; } if(max<def) max=def; } return max; /* 最大深度 */} 获取根节点TElemType Root(PTree *T){ /* 初始条件:树T存在。操作结果:返回T的根 */ int i; for(i=0;i<T->n;i++) if(T->nodes.parent<0) return T->nodes.data; return Nil;} 获取第i个节点的值TElemType Value(PTree *T,int i){ /* 初始条件:树T存在,i是树T中节点的序号。操作结果:返回第i个节点的值 */ if(i<T->n) return T->nodes.data; else return Nil;} 改变节点的值Status Assign(PTree *T,TElemType cur_e,TElemType value){ /* 初始条件:树T存在,cur_e是树T中节点的值。操作结果:改cur_e为value */ int j; for(j=0;j<T->n;j++) { if(T->nodes.data==cur_e) { T->nodes.data=value; return OK; } } return ERROR;} 获取节点的父节点TElemType Parent(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e是T的非根节点,则返回它的父节点,否则函数值为"空"*/ int j; for(j=1;j<T->n;j++) /* 根节点序号为0 */ if(T->nodes.data==cur_e) return T->nodes.parent].data; return Nil;} 获取节点的最左孩子节点TElemType LeftChild(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e是T的非叶子节点,则返回它的最左孩子,否则返回"空"*/ int i,j; for(i=0;i<T->n;i++) if(T->nodes.data==cur_e) /* 找到cur_e,其序号为i */ break; for(j=i+1;j<T->n;j++) /* 根据树的构造函数,孩子的序号>其父节点的序号 */ if(T->nodes.parent==i) /* 根据树的构造函数,最左孩子(长子)的序号<其它孩子的序号 */ return T->nodes.data; return Nil;} 获取节点的右兄弟节点TElemType RightSibling(PTree *T,TElemType cur_e){ /* 初始条件:树T存在,cur_e是T中某个节点 */ /* 操作结果:若cur_e有右(下一个)兄弟,则返回它的右兄弟,否则返回"空"*/ int i; for(i=0;i<T->n;i++) if(T->nodes.data==cur_e) /* 找到cur_e,其序号为i */ break; if(T->nodes.parent==T->nodes.parent) /* 根据树的构造函数,若cur_e有右兄弟的话则右兄弟紧接其后 */ return T->nodes.data; return Nil;} 输出树void Print(PTree *T){ /* 输出树T。加 */ int i; printf("节点个数=%d\n",T->n); printf(" 节点 父节点\n"); for(i=0;i<T->n;i++) { printf(" %c",Value(T,i)); /* 节点 */ if(T->nodes.parent>=0) /* 有父节点 */ printf(" %c",Value(T,T->nodes.parent)); /* 父节点 */ printf("\n"); }} 向树中插入另一棵树Status InsertChild(PTree *T,TElemType p,int i,PTree c){ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度+1,非空树c与T不相交 */ /* 操作结果:插入c为T中p节点的第i棵子树 */ int j,k,l,f=1,n=0; /* 设交换标志f的初值为1,p的孩子数n的初值为0 */ PTNode t; if(!TreeEmpty(T)) /* T不空 */ { for(j=0;j<T->n;j++) /* 在T中找p的序号 */ if(T->nodes.data==p) /* p的序号为j */ break; l=j+1; /* 如果c是p的第1棵子树,则插在j+1处 */ if(i>1) /* c不是p的第1棵子树 */ { for(k=j+1;k<T->n;k++) /* 从j+1开始找p的前i-1个孩子 */ if(T->nodes.parent==j) /* 当前节点是p的孩子 */ { n++; /* 孩子数加1 */ if(n==i-1) /* 找到p的第i-1个孩子,其序号为k1 */ break; } l=k+1; /* c插在k+1处 */ } /* p的序号为j,c插在l处 */ if(l<T->n) /* 插入点l不在最后 */ for(k=T->n-1;k>=l;k--) /* 依次将序号l以后的节点向后移c.n个位置 */ { T->nodes=T->nodes; if(T->nodes.parent>=l) T->nodes.parent+=c.n; } for(k=0;k<c.n;k++) { T->nodes.data=c.nodes.data; /* 依次将树c的所有节点插于此处 */ T->nodes.parent=c.nodes.parent+l; } T->nodes.parent=j; /* 树c的根节点的父节点为p */ T->n+=c.n; /* 树T的节点数加c.n个 */ while(f) { /* 从插入点之后,将节点仍按层序排列 */ f=0; /* 交换标志置0 */ for(j=l;j<T->n-1;j++) if(T->nodes.parent>T->nodes.parent) {/* 如果节点j的父节点排在节点j+1的父节点之后(树没有按层序排列),交换两节点*/ t=T->nodes; T->nodes=T->nodes; T->nodes=t; f=1; /* 交换标志置1 */ for(k=j;k<T->n;k++) /* 改变父节点序号 */ if(T->nodes.parent==j) T->nodes.parent++; /* 父节点序号改为j+1 */ else if(T->nodes.parent==j+1) T->nodes.parent--; /* 父节点序号改为j */ } } return OK; } else /* 树T不存在 */ return ERROR;} 删除子树Status deleted; /* 删除标志数组(全局量) */void DeleteChild(PTree *T,TElemType p,int i){ /* 初始条件:树T存在,p是T中某个节点,1≤i≤p所指节点的度 */ /* 操作结果:删除T中节点p的第i棵子树 */ int j,k,n=0; LinkQueue q; QElemType pq,qq; for(j=0;j<=T->n;j++) deleted=0; /* 置初值为0(不删除标记) */ pq.name='a'; /* 此成员不用 */ InitQueue(&q); /* 初始化队列 */ for(j=0;j<T->n;j++) if(T->nodes.data==p) break; /* j为节点p的序号 */ for(k=j+1;k<T->n;k++) { if(T->nodes.parent==j) n++; if(n==i) break; /* k为p的第i棵子树节点的序号 */ } if(k<T->n) /* p的第i棵子树节点存在 */ { n=0; pq.num=k; deleted=1; /* 置删除标记 */ n++; EnQueue(&q,pq); while(!QueueEmpty(q)) { DeQueue(&q,&qq); for(j=qq.num+1;j<T->n;j++) if(T->nodes.parent==qq.num) { pq.num=j; deleted=1; /* 置删除标记 */ n++; EnQueue(&q,pq); } } for(j=0;j<T->n;j++) if(deleted==1) { for(k=j+1;k<=T->n;k++) { deleted=deleted; T->nodes=T->nodes; if(T->nodes.parent>j) T->nodes.parent--; } j--; } T->n-=n; /* n为待删除节点数 */ }} 层序遍历树void TraverseTree(PTree *T,void(*Visit)(TElemType)){ /* 初始条件:二叉树T存在,Visit是对节点操作的应用函数 */ /* 操作结果:层序遍历树T,对每个节点调用函数Visit一次且仅一次 */ int i; for(i=0;i<T->n;i++) Visit(T->nodes.data); printf("\n");} 孩子链表表示法存储结构/*树的孩子链表存储表示*/typedef struct CTNode { // 孩子节点 int child; struct CTNode *next;} *ChildPtr;typedef struct { ElemType data; // 节点的数据元素 ChildPtr firstchild; // 孩子链表头指针} CTBox;typedef struct { CTBox nodes; int n, r; // 节点数和根节点的位置} CTree; 
H I J C F K 见二叉树相应章节
相关- 1970年代
- 冷媒制冷剂,又称冷媒、致冷剂、雪种,是各种热机中借以完成能量转化的媒介物质。这些物质通常以可逆的相变(如气-液相变)来增大功率。如蒸汽引擎中的蒸汽、制冷机中的雪种等等。一般
- 新能源中国的可再生能源行业的增长速度超过其化石燃料和核电能力。2015年中国成为世界上最大的光伏发电生产国,装机容量为43GW。中国还领导世界生产和使用风能和智能电网技术,生产的
- 编程范型编程范型、编程范式或程序设计法(英语:Programming paradigm),(范即模范、典范之意,范式即模式、方法),是一类典型的编程风格,是指从事软件工程的一类典型的风格(可以对照方法学)。如:函
- 冷温带气候柯本气候分类法(德语:Effektive Klimaklassifikation,意为“有效气候分类法”),最被广泛被使用的气候分类法,由德国气候学家弗拉迪米尔·彼得·柯本所发展出来的气候分类法,1918年
- 羞耻羞耻(英文:Shame),是一种因隐私遭侵害,或经历不荣誉、不成功及不得体等事件而察觉到自己无法符合社会预期或规范,所产生的尴尬或暴露情绪。骄傲经常被视作羞耻的相反。当意识到羞
- 垄断性竞争垄断性竞争(英语:monopolistic competition),或称为独占性竞争,一种不完全竞争(Imperfect competition)市场的形式之一。最早由美国经济学家爱德华·钱柏林,在1933年的著作《垄断性
- 霍利迪交叉Holliday交叉(Holliday junction)是四股DNA所形成的交叉结构,名称来自此于1964年提出此概念者Robin Holliday,用以解释发现于酵母菌的遗传资讯交换,也就是同源重组。目前遗传学上
- 赛乌斯劳国家森林赛乌斯劳国家森林(英语:Siuslaw National Forest)是一座位于美国俄勒冈州西部的国家森林,于1998年设立。森林内生态系统丰富,从海岸森林到沙丘应有尽有。赛乌斯劳国家森林覆盖了
- 哈帕·布拉尔哈帕·布拉尔(英语:Harpal Brar 1939年10月5日-)印度裔英国共产主义者、作家、商人。布拉尔生于印度,1962年来到英国,自1979年担任《挑战》杂志的编辑。1996年,他放弃了威斯敏斯特
|