交换律

✍ dations ◷ 2025-10-21 17:13:07 #二元运算的性质,初等代数,对称,泛函分析

交换律(Commutative property)是被普遍使用的一个数学名词,意指能改变某物的顺序而不改变其最终结果。交换律是大多数数学分支中的基本性质,而且许多的数学证明需要倚靠交换律。简单运算的交换律许久都被假定存在,且没有给定其一特定的名称,直到19世纪,数学家开始形式化数学理论之后,交换律才被声明。

交换律是一个和二元运算及函数有关的性质。而若交换律对一特定二元运算下的一对元素成立,则称这两个元素为在此运算下是“可交换”的。

在群论和集合论中,许多的代数结构被称做是可交换的,若其中的运算域满足交换律。在数学分析和线性代数中,一些知名的运算(如实数及复数上的加法和乘法)的交换律会经常被用于(或假定存在于)证明之中。

“可交换”一词被使用于如下几个相关的概念中:

1. 在集合 S {\displaystyle S} 的一二元运算 {\displaystyle *} 被称之为“可交换”的,若:

2. 若称 x {\displaystyle x} {\displaystyle *} 下和 y {\displaystyle y} “可交换”,即表示:

3. 一二元函数 f : A × A B {\displaystyle f:A\times A\to B} 被称之为“可交换”的,若:

对交换律假定存在的应用早在很久之前便已有所记戴。埃及人用乘法的交换律来简化乘积的计算。且知欧几里得在《几何原本》中已有假定了乘法交换律的存在。对交换律形式上的应用产生于18世纪末19世纪初,那时数学家开始在研究函数的理论。今日,交换律已被普遍认知,且在大多数的数学分支中被当做基本性质来使用。交换律的简易版本通常会在初等数学教程中被教导。

第一个使用“可交换(commutative)”一词的是 Francois Servois 于1814年写下的笔记,这一词在笔记中被用来指有着现在称之为交换律的函数。这一词首次出现于英语中的是在1844年的英国皇家学会哲学汇刊中。

结合律和交换律密切相关着。结合律是指运算的顺序并不会影响其最终结果。相对地,交换律则是指算子的顺序不会影响其最终结果的性质。

对称可以和交换律有直接的关连。若将一个可交换运算子写成一个二元函数,则此一函数会对 y = x {\displaystyle y=x} 这条线对称。举例来说,若设一函数 f {\displaystyle f} 来表示加法(一可交换运算),所以 f ( x , y ) = x + y {\displaystyle f(x,y)=x+y} ,也因此 f {\displaystyle f} 会是个如右图所见的对称函数。

两个广为人知的可交换二元运算的例子为:

一些不可交换二元运算有:

相关

  • 血清学血清学(serology)的诊断原为研究血清反应的一门医学分支,如今则多用来观察患者的血清以判断、分析相应的疾病。血清检查是医学上常用的一种检测手段,除了可以诊断细菌、病毒外
  • 图像学图像学(德语:Ikonologie;英语:Iconology),也可称作图像解释学、批判性图像学,是图像研究的一门方法与科学,也是二十世纪上半促使艺术史研究成为独立学科的重要开创性理论基础。 “
  • 脑干脑部除了大脑,小脑,间脑以外的区域,合称脑干,由中脑(midbrain)、脑桥(pons)、延髓(medulla)三部分组成,上接间脑、下接脊髓。脑干位于大脑下方,小脑前方。它负责调节复杂的反射活动,包括
  • 上索恩省上索恩省(法语:Haute-Saône)是法国勃艮第-弗朗什-孔泰大区所辖的省份。该省编号为70。5个海外省及大区
  • 国际跨性别现身日国际跨性别现身日(英语:International Transgender Day of Visibility)是在3月31日专门为庆祝跨性别者,并培养提高全球关注对跨性别者面临歧视的意识的节日。这个节日是由美国密
  • 甘露糖结合凝集素1HUP· protein binding · mannose binding · eukaryotic cell surface binding · calcium-dependent protein binding· collagen· acute-phase response · compl
  • 黑狱亡魂《黑狱亡魂》(英语:The Third Man)是一部1949年上映的英国黑色电影,由卡洛·李执导,约瑟夫·考登、艾莉达·瓦利、屈佛·霍华和奥森·威尔士主演,编剧为著名小说家格雷厄姆·格林,
  • 空拍机四轴飞行器又称四旋翼、四转子,是一种多轴飞行器,有四个旋翼来悬停、维持姿态及平飞。和固定翼飞机不同,它通过旋翼提供的推力使飞机升空。它的四个旋翼大小相同,分布位置接近对
  • 第二学生活动中心坐标:25°00′47″N 121°32′13″E / 25.013172°N 121.536837°E / 25.013172; 121.536837台湾大学第二学生活动中心位于台北市大安区罗斯福路四段,空间主要提供国立台湾大
  • 美利坚合众国宪法第四条修正案宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙