算术基本定理

✍ dations ◷ 2025-11-24 02:30:38 #数论,数学定理

算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。

例如: 6936 = 2 3 × 3 × 17 2 {\displaystyle 6936=2^{3}\times 3\times 17^{2}} 整除。所以 p | b {\displaystyle p|b} 的最小性矛盾!

因此唯一性得证。

在一般的数域中,并不存在相应的定理;事实上,在虚二次域 Q ( D ) ( D N ) {\displaystyle \mathbb {Q} ({\sqrt {-D}})\quad (D\in \mathbb {N} )} 之中,只有少数几个能满足,最大的一个 D {\displaystyle D} D = 163 {\displaystyle D=163} 。例如, 6 {\displaystyle 6} 可以以两种方式在 Z {\displaystyle \mathbb {Z} } 中表成整数乘积: 2 × 3 {\displaystyle 2\times 3} ( 1 + 5 ) ( 1 5 ) {\displaystyle (1+{\sqrt {-5}})(1-{\sqrt {-5}})} 。同样的,在分圆整数中一般也不存在唯一分解性,而这恰恰是人们在证明费马大定理时所遇到的陷阱之一。

欧几里得在普通整数 Z {\displaystyle \mathbb {Z} } 中证明了算术基本定理──每个整数可唯一地分解为素数的乘积,高斯则在复整数 Z {\displaystyle \mathbb {Z} } 中得出并证明,只要不计四个可逆元素 ( ± 1 , ± i ) {\displaystyle (\pm 1,\pm i)} 之作用,那么这个唯一分解定理在 Z {\displaystyle \mathbb {Z} } 也成立。高斯还指出,包括费马大定理在内的普通素数的许多定理都可能扩大到复数域。

对于二次方程: a x 2 + b x + c = 0 ( a 0 ) {\displaystyle ax^{2}+bx+c=0\qquad \left(a\neq 0\right)} ,它的根可以表示为: x 1 , 2 = b ± b 2 4 a c   2 a {\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac\ }}}{2a}}}

因为负数不能开平方, b 2 4 a c {\displaystyle b^{2}-4ac} 的符号就很重要,如果为正,有两个根;如果为0,只有一个根;如果为负,没有实根。欧拉的素数公式: f ( x ) = x 2 + x + 41 ( a 0 ) {\displaystyle f(x)=x^{2}+x+41\qquad \left(a\neq 0\right)} b 2 4 a c = 1 164 = 163 {\displaystyle b^{2}-4ac=1-164=-163} 两个复数解为: x 1 , 2 = 1 ± 163 i 2 {\displaystyle x_{1,2}={\frac {-1\pm {\sqrt {163}}i}{2}}}

a + b d {\displaystyle a+b{\sqrt{-d}}} 哪个 d {\displaystyle d} 值可以得到唯一分解定理? d = 1 , 2 , 3 {\displaystyle d=1,2,3} 皆可得到定理,但当 d = 5 {\displaystyle d=5} 时不能。因为在这个数系中6这个数有两种形式的因子分解(分解至不可分约的情形)。 6 = 2 × 3 {\displaystyle 6=2\times 3} 6 = ( 1 + 5 ) ( 1 5 ) {\displaystyle 6=(1+{\sqrt {-5}})(1-{\sqrt {-5}})} 。在高斯时代,已知有9个 d {\displaystyle d} 使得 a + b d {\displaystyle a+b{\sqrt{-d}}} 所产生的数有唯一因子分解( a {\displaystyle a} b {\displaystyle b} 如上面指出那样取值)。 d = 1 , 2 , 3 , 7 , 11 , 19 , 43 , 67 , 163 {\displaystyle d=1,2,3,7,11,19,43,67,163} 高斯认为 d {\displaystyle d} 的数量不会超过10个,但是没有人能够证明。1952年,业余数学家,退休的瑞士工程师库尔特·黑格纳(英语:Kurt Heegner)(Kurt Heegner)发表了他的证明,声称第10个高斯类数不存在。但是没有人相信他。世界又等待了15年之后才知道这个定理:麻省理工学院的斯塔克(Harold Stark)和剑桥大学的阿兰贝克(AlanBaker)独立用不同方法证明了第10个 d {\displaystyle d} 值不存在。两个人重新检查了希格内尔的工作,发现他的证明是正确的。为了纪念长期被忽视的希格内尔,上述的9个数被称为黑格纳数,一些曲线上的点被命名为希格内尔点。参见《数学新的黄金时代》和其它数学书籍。

相关

  • 旧字体陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 混响混響(英语:reverberation)是声源发音停止后声音继续存在的声学现象。其产生原因在于声波的传播需要被墙壁或周围障碍物所阻碍并反射,其消失也就滞后于发声。根据不同场合的音效
  • span class=nowrapSm(NOsub3/sub)sub3/sub/span硝酸钐(化学式: Sm(NO3)3)是钐的硝酸盐,为淡黄色易溶于水的化合物。硝酸钐可以借由将硝酸与氢氧化钐反应生成:硝酸钐六水合物加热至90°C熔化,在125°C失去一分子结晶水,继续加热逐
  • 花屿花屿隶属于澎湖县望安乡花屿村,其位置在望安岛西北稍南距离约18公里处,是澎湖县最西方的岛屿。花屿的外形大致呈三角形,全岛最高点位于东北岸的烟墩山,标高53米。满潮时的面积约
  • 哥伦比亚特区及自治领地纪念币美国哥伦比亚特区及自治领地25美分纪念币发行计划是美国铸币局在2009年发行面值为25美分的一年期硬币计划,以纪念哥伦比亚特区以及作为美国岛屿地区的波多黎各,关岛,美属维尔京
  • 雷蒙·巴尔雷蒙·巴尔(Raymond Barre,1924年4月12日-2007年8月25日)是法国中间偏右的政治家和经济学家。他从1976年至1981年在瓦勒里·季斯卡·德斯坦下担任总理。他出生于法国海外省留尼
  • 阮有排阮有排(越南语:Nguyễn Hữu Bài/.mw-parser-output .han-nom{font-family:"Nom Na Tong","Han-Nom Gothic","Han-Nom Ming","HAN NOM A","HAN NOM B","Ming-Lt-HKSCS-UNI-H",
  • 戴安娜·曼纳斯戴安娜·曼纳斯(英语:Diana Olivia Winifred Maud Cooper, Viscountess Norwich,旧姓:Lady Diana Manners,1892年8月29日-1986年6月16日)是一个突出的社会人物,主要在伦敦和巴黎活跃
  • 四羰基钴酸四羰基钴酸(又称四羰基氢化钴、四羰基合钴(-I)酸)是一种金属有机化合物,化学式为HCo(CO)4。它是挥发性的黄色液体,其蒸汽无色,具有恶臭。它在空气中易被氧化,微溶于水,是一种强酸。
  • 奥利弗·戈德史密斯奥利弗·戈德史密斯(Oliver Goldsmith,1728年11月10日-1774年4月4日),爱尔兰诗人、作家与医生。以小说《威克菲德的牧师》(),他因为思念兄弟而创作的诗《废弃的农村》(,1770年),与他的剧