彼得-魏尔定理

✍ dations ◷ 2025-02-27 11:08:40 #群表示论,调和分析,拓扑群

彼得-魏尔定理(英语:Peter–Weyl theorem)是调和分析和群表示论中的一组重要定理,于1927年由赫尔曼·魏尔和他的学生弗里茨·彼得(英语:Fritz_Peter)证明。该定理刻画了紧群不可约表示的完备性,可以视作有限群表示理论中弗罗贝尼乌斯定理的推广。定理分为三部分:第一部分指出,紧群 G {\displaystyle G} 的所有有限维不可约酉表示(英语:Unitary representation)的矩阵元(英语:Matrix_coefficient),在 G {\displaystyle G} 上所有复值连续群函数构成、配备了一致范数(英语:Uniform_norm)的空间中稠密。第二部分指出, G {\displaystyle G} 在任何一个可分希尔伯特空间上的酉表示都完全可约。第三部分断言, G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元构成了 G {\displaystyle G} 上平方可积的复值函数空间的一组标准正交基。

20世纪20年代,魏尔在研究广义相对论的数学基础时,对连续群的表示理论产生了兴趣。在研究中,他试图将有限群表示理论中的弗罗贝尼乌斯定理(即有限群正则表示(英语:Regular representation)可以约化为其所有不可约表示的直和)推广到连续群,尤其是特殊线性群。与此同时,伊赛·舒尔(英语:Issai_Schur)等其它数学家的工作也为研究群表示提供了更强有力的工具。1927年,魏尔在其学生彼得的协助下证明了本定理,断言了紧群不可约表示的完备性。值得注意的是,魏尔在证明中不必要地假定了群运算的可微性,因为在当时他并不知道如何在除紧李群之外的一般紧群上定义群作用下不变的积分。这一问题直至1933年才由阿弗雷德·哈尔(英语:Alfréd Haar)建立的哈尔测度理论彻底解决。

彼得-魏尔定理在抽象调和分析理论中扮演了重要的角色。正如本尼迪克特·格罗斯(英语:Benedict Gross)所述:“现代调和分析发轫于20世纪20年代......她诞生于1927年,而彼得和魏尔的论文是她的出生证明。”此外,冯诺依曼于1933年利用该定理的一个推论,解决了紧群版本的希尔伯特第五问题。

G {\displaystyle G} 为紧群, C ( G ) {\displaystyle C(G)} G {\displaystyle G} 上所有复值连续函数构成、配备了一致范数的线性空间, Δ {\displaystyle \Delta } G {\displaystyle G} 的所有有限维不可约酉表示的矩阵元张成的线性空间,则 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

χ C ( G ) {\displaystyle \forall \chi \in C(G)} ,可以定义卷积算子 T χ : L 2 ( G ) L 2 ( G ) {\displaystyle T_{\chi }:L^{2}(G)\to L^{2}(G)}

利用阿尔泽拉引理可以证明,该算子是 L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧算子。

f C ( G ) {\displaystyle f\in C(G)} ,由 G {\displaystyle G} 的紧性可知 f {\displaystyle f} G {\displaystyle G} 上一致连续。即对任意 ϵ > 0 {\displaystyle \epsilon >0} ,存在群单位元 e {\displaystyle e} 的邻域的 U {\displaystyle U} ,使得任意 u , v G , u v 1 U {\displaystyle u,v\in G,uv^{-1}\in U} ,都有 | f ( v ) f ( u ) | < ϵ 2 {\displaystyle |f(v)-f(u)|<{\frac {\epsilon }{2}}} 。不失一般性,可以假设 U 1 = U {\displaystyle U^{-1}=U}

χ {\displaystyle \chi } 是定义在 G {\displaystyle G} 上,且支集 s u p p ( χ ) U {\displaystyle supp(\chi )\subset U} 的连续实值函数。由乌雷松引理,这样的函数总是存在的。不失一般性,可以假设 χ ( v ) = χ ( v 1 ) {\displaystyle \chi (v)=\chi (v^{-1})} d g χ ( g ) = 1 {\displaystyle \int \mathrm {d} g\chi (g)=1} ,因为对任意 χ {\displaystyle \chi } 总可以通过如下的变换使其满足上述条件:

此时,可以证明 T χ {\displaystyle T_{\chi }} L 2 ( G ) {\displaystyle L^{2}(G)} 上的紧自伴算子。利用紧自伴算子的谱定理,可知:

其中 V λ i {\displaystyle V_{\lambda _{i}}} 为算子 T χ {\displaystyle T_{\chi }} 本征值为 λ i 0 {\displaystyle \lambda _{i}\neq 0} 的有限维本征子空间, V 0 {\displaystyle V_{0}} T χ {\displaystyle T_{\chi }} 的核。因此, T χ ( f ) I m ( T χ ) = C ( G ) V 0 {\displaystyle T_{\chi }(f)\in Im(T_{\chi })=C(G)-V_{0}} 可以写成一列绝对一致收敛的函数项级数和:

故而存在 N {\displaystyle N} ,使得 v G {\displaystyle \forall v\in G} | T χ ( f ) ( v ) i = 1 N f i ( v ) | < ϵ 2 {\displaystyle |T_{\chi }(f)(v)-\sum _{i=1}^{N}f_{i}(v)|<{\frac {\epsilon }{2}}}

另一方面:

因此:

L ( g ) : C ( G ) C ( G ) {\displaystyle L(g):C(G)\to C(G)} G {\displaystyle G} 的左正则表示,不难证明算子 L ( g ) {\displaystyle L(g)} T χ {\displaystyle T_{\chi }} 对易,因此本征子空间 V λ i {\displaystyle V_{\lambda _{i}}} 也是左正则表示的有限维不变子空间。由于有限维表示完全可约, V λ i {\displaystyle V_{\lambda _{i}}} 可以写成 G {\displaystyle G} 的有限维不可约酉表示的表示空间的直和。在每个这样的空间 X {\displaystyle X} 上:

其中 r i j {\displaystyle r_{ij}} 是该不可约表示的矩阵元。这意味着 V λ i Δ {\displaystyle V_{\lambda _{i}}\subset \Delta } ,进而 i = 1 N f i ( v ) Δ {\displaystyle \sum _{i=1}^{N}f_{i}(v)\in \Delta } 。总之,对于任意 f C ( G ) {\displaystyle f\in C(G)} ϵ > 0 {\displaystyle \epsilon >0} ,都存在 Δ {\displaystyle \Delta } 中的某个元素,使得其与 f {\displaystyle f} 之差的一致范数小于 ϵ {\displaystyle \epsilon } 。这意味着 Δ {\displaystyle \Delta } C ( G ) {\displaystyle C(G)} 中稠密。

以上证明的思路来自彼得和魏尔的原始论文。实际上,利用格尔范德-赖科夫定理(英语:Gelfand–Raikov theorem)和魏尔斯特拉斯逼近定理亦可直接推出本定理。

R {\displaystyle R} 是紧群 G {\displaystyle G} 在可分希尔伯特空间 H {\displaystyle H} 上的任意酉表示,则 H {\displaystyle H} 可分解为 R {\displaystyle R} 的有限维不变子空间的直和,其中每个子空间都承载了 G {\displaystyle G} 的不可约表示。

, {\displaystyle \langle ,\rangle } H {\displaystyle H} 上定义的内积。对任意 u H , | | u | | = 1 {\displaystyle u\in H,||u||=1} ,定义算子 T u : H H {\displaystyle T_{u}:H\to H}

可证 T u {\displaystyle T_{u}} H {\displaystyle H} 上的非零紧自伴算子,且与 R ( g ) {\displaystyle R(g)} 对易。利用紧自伴算子的谱定理,可对 H {\displaystyle H} 作如下分解:

其中, T u {\displaystyle T_{u}} 的每个有限维特征子空间 H λ i {\displaystyle H_{\lambda _{i}}} 又是群表示 R {\displaystyle R} 的不变子空间,故其可进一步分解为承载 G {\displaystyle G} 的有限维不可约表示的子空间的直和。

H {\displaystyle H'} H {\displaystyle H} 中可以分解为承载有限维不可约表示的子空间的直和的最大子空间, H {\displaystyle H'} H {\displaystyle H''} 的正交补。(由佐恩引理,这样做是合法的。)显然 H {\displaystyle H''} 也是 R {\displaystyle R} 的不变子空间,若 H {\displaystyle H''} 不是零空间, R {\displaystyle R} H {\displaystyle H''} 上的限制也是 G {\displaystyle G} 的酉表示。因此,将以

相关

  • 朱砂朱砂又称辰砂、丹砂、赤丹、汞沙,是硫化汞的天然矿石,大红色,有金刚光泽至金属光泽,属三方晶系。朱砂产于石灰岩,板岩,砂岩中。分布于湖南、湖北、四川、广西、云南、贵州。朱砂为
  • 吉萨金字塔群坐标:29°58′43.41″N 31°8′5.06″E / 29.9787250°N 31.1347389°E / 29.9787250; 31.1347389吉萨金字塔群(阿拉伯语:أهرام الجيزة‎)是指一大片位在埃及开罗郊
  • 黑月“黑月”源自于巫术。它在天文学任何学说上没有明确的意义。但它的解释是指“黑暗中的明月”,意指“希望”。也有人直接翻译成“黑色的月亮”,也有一些人用“在给定的任何一个
  • 自拍棒自拍杆,也被称作自拍棒或自拍神器,是可以将智能手机或相机固定在超越手臂正常范围的棒端,来支持自拍的一种独脚架。有些型号的自拍杆在观察屏对面立有一面镜子,以便于拍摄 。自
  • 军事航空军事航空,是透过军用航空器进行军事行动的手段,包括透过国家的空运(货物)能力,以运送部队投入战场,或提供前线的后勤支援。为进行这样的空中战争,足够的空中力量是必要的,包括运输和
  • 交易者《交易者》(英语:The Swapper)是一款在Microsoft Windows、Mac OS X和Linux等平台运行的益智平台游戏。
  • 福岛县营吾妻球场福岛县营吾妻球场(日语:福島県営あづま球場/ふくしまけんえいあづまきゅうじょう ),是位于日本福岛县福岛市福岛县吾妻综合运动公园(日语:福島県あづま総合運動公園)内的棒球场,所有
  • 白雪石白雪石(1915年6月-2011年4月22日),原名白增锐,斋名何须斋,北京人,中华人民共和国画家,第十一届全国政协委员。担任清华大学美术学院咨询委员会委员。2008年,当选第十一届全国政协委员
  • 曹欣曹欣(1921年11月-2014年1月30日),男,江苏苏州人,中国人民解放军少将。肄业于上海同义中学。1936年9月,任上海市职业界救亡协会第五干事会九分会成员。后参加八路军129师,后担任先锋
  • 马亮 (清朝)马亮(1845年-1909年),谥勇僖,清朝军事将领。官至伊犁将军、成都将军。同治五年,其担任骁骑校,后升为协领、副都统衔。光绪年间,担任甯古塔佐领、拉林佐领。光绪二十六年,任密云副都统