坎宁安函数又称为皮尔逊-坎宁安函数(Pearson-Cunningham function)是英国数学家坎宁安在1908年首先研究的特殊函数,,定义如下:
其中U为特里科米函数。
坎宁安在是在用多变数扩展的埃奇沃斯级数,依几率密度函数的矩来近似几率密度函数时用到坎宁安函数,坎宁安函数和一维或多维常系数的扩散方程有关
坎宁安函数是下列微分方程的解
+ e x p ( − x + ( 1 / 2 ∗ I ) ∗ P i ∗ m − I ∗ π ∗ n ) ∗ Γ ( − m ) ∗ H e u n B ( 2 ∗ m , 0 , 2 + 4 ∗ n , 0 , ( x ) ) Γ ( 1 + n − ( 1 / 2 ) ∗ m ) ∗ Γ ( − ( 1 / 2 ) ∗ m − n ) {\displaystyle +{\frac {exp(-x+(1/2*I)*Pi*m-I*\pi *n)*\Gamma (-m)*HeunB(2*m,0,2+4*n,0,{\sqrt {(}}x))}{\Gamma (1+n-(1/2)*m)*\Gamma (-(1/2)*m-n)}}}
ω 0.5 , 0.5 ( x ) = ( 1 / 80640 ) ∗ ( 120960 ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ ( x ) − 141120 ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 3 / 2 ) + 77616 ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 5 / 2 ) − 27720 ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 7 / 2 ) + 7315 ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 9 / 2 ) + ( 141120 ∗ I ) ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 3 / 2 ) + ( 27720 ∗ I ) ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 7 / 2 ) − ( 100800 ∗ I ) ∗ π ∗ x − ( 7315 ∗ I ) ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 9 / 2 ) − ( 77616 ∗ I ) ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ x ( 5 / 2 ) − 40320 ∗ π + ( 75600 ∗ I ) ∗ π ∗ x 2 + 100800 ∗ π ∗ x + ( 40320 ∗ I ) ∗ π − 75600 ∗ π ∗ x 2 − ( 120960 ∗ I ) ∗ ( 2 ) ∗ Γ ( 3 / 4 ) 2 ∗ ( x ) + 32760 ∗ π ∗ x 3 − ( 32760 ∗ I ) ∗ π ∗ x 3 − 9945 ∗ π ∗ x 4 + ( 9945 ∗ I ) ∗ π ∗ x 4 + 80640 ∗ π ( 3 / 2 ) ∗ O ( x ( 9 / 2 ) ) ∗ ( x ) ) / ( π ( 3 / 2 ) ∗ ( x ) ) {\displaystyle \omega _{0.5,0.5}(x)={(1/80640)*(120960*{\sqrt {(}}2)*\Gamma (3/4)^{2}*{\sqrt {(}}x)-141120*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}3/2)+77616*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}5/2)-27720*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}7/2)+7315*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}9/2)+(141120*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}3/2)+(27720*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}7/2)-(100800*I)*\pi *x-(7315*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}9/2)-(77616*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*x^{(}5/2)-40320*\pi +(75600*I)*\pi *x^{2}+100800*\pi *x+(40320*I)*\pi -75600*\pi *x^{2}-(120960*I)*{\sqrt {(}}2)*\Gamma (3/4)^{2}*{\sqrt {(}}x)+32760*\pi *x^{3}-(32760*I)*\pi *x^{3}-9945*\pi *x^{4}+(9945*I)*\pi *x^{4}+80640*\pi ^{(}3/2)*O(x^{(}9/2))*{\sqrt {(}}x))/(\pi ^{(}3/2)*{\sqrt {(}}x))}}