非线性规划

✍ dations ◷ 2025-08-02 21:27:42 #非线性规划

在数学中,非线性规划是求解由一系列未知实函数组成的组方程和不等式(统称为约束)定义的最优化问题,伴随着一个要被最大化或最小化的目标函数,只是一些约束或目标函数是非线性的。 它是最优化处理非线性问题的一个子领域。

从一系列运输方法中选择优化运输成本的一个或多个表现规模经济的连通性和容量约束不同的非凸问题。例如从管道、铁路油槽车、罐车、河驳船或沿海油船中选择或组合的石油产品运输。由于经济批量大小,除了平滑变化之外,成本函数可以有不连续性。

现代工程实践涉及到大量的数值优化。除了在很少一部分重要情形(如无源电路)中,工程问题是非线性的,它们通常是非常复杂。

在实验科学中,一些简单的数据分析(如已知位置和形状但未知幅度的峰的总和的光谱的拟合)可以用线性方法来完成,但一般来说这些问题也是非线性的。通常研究的是含有变量参数的系统的理论模型以及含有未知参数的试验模型。可以试着用数值寻找最优值。这种情况下,除了最优值本身通常还需要对结果的精度进行量度。

令 、、为正整数。令 为 的一个子集,令 、 和 为 的实值函数(英语:real-valued function),对每个 属于 {, …, } 及每个 属于 {, …, }。

非线性最小化问题是下面形式的最优化问题

非线性最大化问题定义方式类似。

约束集的性质有若干可能性,也被称为可行集或可行域(英语:feasible region)。

无解问题(infeasible problem)是指没有一组变量可以满足所有的约束,也就是约束之间有互相矛盾的情形,没有解存在。

有解问题(feasible problem)是指至少有一组变量可以满足所有的约束条件。

无界限问题(unbounded problem)是一个有解问题,其变量没有上限限制,因此没有最佳解,因为总会有一组变量使得目标函数比其他组的变量有更好的结果。

若目标函数为线性,约束的空间为多胞形,此问题是线性规划问题,可以用许多著名的线性规划解来求解。

若目标函数为凹函数(最大化问题)或是凸函数(最小化问题),且约束为凸集,此问题称为凸规划问题,大部分情形下可以用凸优化的方式来求解。

若目标函数是凹函数和凸函数的比值(最大化问题)及约束为凸集,此问题可以用分数规划(英语:fractional programming)的方式转换为凸集的最优化问题。

许多方式可以解非凸集的问题。其一个方式是用线性规划问题的特殊公式,另一种方式则是用分支定界法(英语:branch and bound),将问题分为几个可以用凸集法(最小化问题)求解或是线性近似的子集合,较小区域内的总成本会有一下限。在随后的分区后,在一些点上其成成本会等于所有近似解的下限,此解即为实际解。此解虽然不一定唯一,不过是为最佳解。若已确认可能的最佳解和已找到的解之间的误差在容许值内,可以提早结束此算法。这些点称为ε-最佳。若要在有限内结束,一般就需要在ε-最佳点结束。尤其在大型的、困难的问题,或是问题有不确定的成本或价值,但不确定以由适当的信赖性估测所估测时,更需要在ε-最佳点结束的技巧。

在可微函数及约束规范的条件下,卡罗需-库恩-塔克条件(KKT条件)是有最佳解的必要条件。在凸集的条件下,这也是充份条件。若其中有些函数是不可微分的,也可以用次导数条件的卡罗需-库恩-塔克条件。

可以用下列约束来定义一个简单问题

需要最大化的目标函数为

其中 x = (1, 2)。解决二维问题.

用下面这些约束就可以定义另一个简单的问题

需要最大化的目标函数为

其中 x = (1, 23). 解决三维问题。

工程中用到非线性优化,例如建立储油池的计算模型, 或油气藏工程的决策制定。

相关

  • 痘病毒亚科 痘病毒脊索亚科(Chordopoxvirinae)    正痘病毒属(Orthopoxvirus)    副痘病毒属(Parapoxvirus)    禽痘病毒属(Avipoxvirus)    山羊痘病毒属(Capripoxvi
  • 咽喉炎咽喉痛(sore throat、throat pain,又称喉咙痛或喉痛),是指咽喉出现痛楚的症状,最主要的成因是咽喉炎(喉咙发炎),但可由其他原因引致,例如白喉和伤风感冒威胁。 服用非类固醇消炎止痛
  • 训练训练不类似练习。两者有分别。训练就是有别人(教练)的参考或教导;但练习可以独自或与同伴一起进行。训练也有很多不同的种类,例如是运动类的训练,就有游泳的训练、跑步的训练、足
  • 吴丹丹,通称吴丹(缅甸语:ဦးသန့်,1909年1月22日-1974年11月25日),是一名缅甸外交家,由1961年至1971年担任联合国第三任秘书长。吴丹出生于下缅甸的班达诺(英语:Pantanaw)。他是家中长
  • 小舌会厌音小舌会厌音是一组双发音部位辅音,即同时发出小舌音及会厌音。例如索马里语的小舌塞音.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Se
  • 春香传《春香传》(춘향전)是朝鲜半岛著名的爱情故事,数百年来一直都在当地乃至东亚地区流传。春香歌是朝鲜半岛传统说唱艺术盘索里的代表节目之一,也曾多次改编成电影。中国亦曾把此剧
  • 克莱因瓶在数学领域中,克莱因瓶(德语:Kleinsche Flasche)是指一种无定向性的平面,比如二维平面,就没有“内部”和“外部”之分。克莱因瓶最初的概念提出是由德国数学家费利克斯·克莱因提
  • 维多利亚和阿尔伯特博物馆维多利亚和阿尔伯特博物馆(英语:Victoria and Albert Museum, V&A),是位于英国伦敦的工艺美术、装置及应用艺术的博物馆,成立于1852年。1899年,维多利亚女王为博物馆的侧厅举行奠
  • 老挝总理18世纪初叶,澜沧王国解体,分裂成为琅勃拉邦、万象、川圹、占巴塞4个王国。18世纪末叶到19世纪中叶,这些王国逐步为暹罗所统治,一直持续到1893年成为法国保护国。
  • 孙策孙策(175年7月-200年5月5日),字伯符,吴郡富春(今浙江杭州富阳)人,孙策是长沙太守孙坚的长子、吴大帝孙权的长兄,是孙吴的开拓者和奠定基础首要者。在群雄割据时期,曾待过袁术旗下,但不