首页 >
实际气体
✍ dations ◷ 2025-07-08 16:17:39 #实际气体
在研究气体时,现实情况下气体分子间的相互作用力不能忽略时,气体状态方程则会偏离与压力,密度和温度的线性关系,在应用理想气体的理论时会引起一定的偏差。与理想气体相对,称为实际气体或真实气体。R
T
=
(
P
+
a
V
m
2
)
(
V
m
−
b
)
{displaystyle RT=(P+{frac {a}{V_{m}^{2}}})(V_{m}-b)}对于上式,a是同分子引力有关的常数,b是同分子自身体积有关的常数,统称为范德华常数,Vm为气体的摩尔体积,p是气体的压强,V是气体的体积,T为热力学温度,R=8.314J·mol-1·K-1雷德利希-邝氏方程是另一个实际气体二元方程。比 范德华方程更精确,同时比大多数多元实际气体方程精确。R
T
=
P
(
V
m
−
b
)
+
a
V
m
(
V
m
+
b
)
T
1
2
(
V
m
−
b
)
{displaystyle RT=P(V_{m}-b)+{frac {a}{V_{m}(V_{m}+b)T^{frac {1}{2}}}}(V_{m}-b)}注意这里的常数a,b与范德华方程中的不同。
a
=
0.4275
R
2
T
c
2.5
P
c
{displaystyle a=0.4275{frac {R^{2}T_{c}^{2.5}}{P_{c}}}}b
=
0.0867
R
T
c
P
c
{displaystyle b=0.0867{frac {RT_{c}}{P_{c}}}}贝特罗方程极少使用。P
=
R
T
V
m
−
b
−
a
T
V
m
2
{displaystyle P={frac {RT}{V_{m}-b}}-{frac {a}{TV_{m}^{2}}}}修正式更为精确:P
=
R
T
V
m
[
1
+
9
P
/
P
c
128
T
/
T
c
(
1
−
6
(
T
/
T
c
)
2
)
]
{displaystyle P={frac {RT}{V_{m}}}left}狄特里奇方程近年来亦很少使用。
P
=
R
T
exp
(
−
a
V
m
R
T
)
V
m
−
b
{displaystyle P=RT{frac {exp {({frac {-a}{V_{m}RT}})}}{V_{m}-b}}}
.克劳修斯方程是非常简洁的三元实际气体方程。R
T
=
(
P
+
a
T
(
V
m
+
c
)
2
)
(
V
m
−
b
)
{displaystyle RT=left(P+{frac {a}{T(V_{m}+c)^{2}}}right)(V_{m}-b)}其中a
=
27
R
2
T
c
3
64
P
c
{displaystyle a={frac {27R^{2}T_{c}^{3}}{64P_{c}}}}b
=
V
c
−
R
T
c
4
P
c
{displaystyle b=V_{c}-{frac {RT_{c}}{4P_{c}}}}c
=
3
R
T
c
8
P
c
−
V
c
{displaystyle c={frac {3RT_{c}}{8P_{c}}}-V_{c}}维里方程
P
V
m
=
R
T
(
1
+
B
(
T
)
V
m
+
C
(
T
)
V
m
2
+
D
(
T
)
V
m
3
+
.
.
.
)
{displaystyle PV_{m}=RTleft(1+{frac {B(T)}{V_{m}}}+{frac {C(T)}{V_{m}^{2}}}+{frac {D(T)}{V_{m}^{3}}}+...right)}或P
V
m
=
R
T
(
1
+
B
′
(
T
)
P
+
C
′
(
T
)
P
2
+
D
′
(
T
)
P
3
+
.
.
.
)
{displaystyle PV_{m}=RTleft(1+{frac {B^{prime }(T)}{P}}+{frac {C^{prime }(T)}{P^{2}}}+{frac {D^{prime }(T)}{P^{3}}}+...right)}其中 A, B, C, A′, B′, C′ 是温度依赖常数。其中其中这个方程在密度0.8 ρcr以下时较为精确, 其中 ρcr是物质的临界点密度。 方程中的常数如下表所列:
P的单位是kPa, V的单位是
m
3
K
m
o
l
{displaystyle {frac {m^{3}}{Kmol}}}
, R=8.314
k
P
a
.
m
3
K
m
o
l
.
K
{displaystyle {frac {kPa.m^{3}}{Kmol.K}}}BWR方程P
=
R
T
d
+
d
2
(
R
T
(
B
+
b
d
)
−
(
A
+
a
d
−
a
α
d
4
)
−
1
T
2
[
C
−
c
d
(
1
+
γ
d
2
)
exp
(
−
γ
d
2
)
]
)
{displaystyle P=RTd+d^{2}left(RT(B+bd)-(A+ad-a{alpha }d^{4})-{frac {1}{T^{2}}}right)}其中d是摩尔密度; a, b, c, A, B, C, α, γ 是经验常数。
相关
- 斑疹伤寒斑疹伤寒(Typhus),是由立克次体引起的传染病,可分为两大类:分别是是流行性斑疹伤寒(Epidemic Louseborne typhus)与地方性斑疹伤寒(Endemic Fleaborne typhus)。斑疹伤寒是流行性斑疹
- 图像记谱图像记谱(Graphical notation)是音乐记谱法的其中一种,以图案、不常用的符号以及文字解释的形式去描述音乐的演奏方法。当代的实验音乐为了发掘新的演奏模式,当传统的音乐符号
- 热带雨林热带雨林气候,又称热带型雨林气候,全年高温多雨,可分为两种子类型:常年受赤道低压带控制的赤道多雨气候和常年受潮湿信风控制的热带海洋性气候,在对应的柯本气候分类法中代号为“
- 帕斯卡布莱兹‧帕斯卡(Blaise Pascal,1623年6月19日-1662年8月19日),法国神学家、哲学家、数学家、物理学家、化学家、音乐家、教育家、气象学家。帕斯卡早期进行自然和应用科学的研究,
- 普遍文法普遍文法(英语:universal grammar,缩写为 UG),又译为普遍语法,一种语言学理论,最有名的提倡者为乔姆斯基。这个理论认为在人类能够学习到各种文法的普遍能力,是被内建在大脑中的。它
- 可见光谱可见光谱(Visible light)是电磁波谱中人眼可以看见(感受得到)的部分。这个范围中电磁辐射被称为可见光,或简单地称为光。人眼可以感受到的波长范围一般是落在380到760纳米 。对应
- PmWikiPmWiki是一款用PHP编写的、无需数据库支持的Wiki。个人网站尤其适合。PmWiki支持简体中文,但需要做一些修改工作,以避免一些意想不到的错误。
- 南塔克特楠塔基特(英语:Nantucket)是美国马萨诸塞州南部的一个岛屿,与塔克纳克岛(Tuckernuck Island)和木斯基格岛(Muskeget Island)组成楠塔基特镇(其范围与楠塔基特县同,且为县治所在)。面积2
- 楠塔基特县楠塔基特(英语:Nantucket)是美国马萨诸塞州南部的一个岛屿,与塔克纳克岛(Tuckernuck Island)和木斯基格岛(Muskeget Island)组成楠塔基特镇(其范围与楠塔基特县同,且为县治所在)。面积2
- 高雄市纹章高雄市(たかおし),存在于1924年至1945年的台湾日治时期行政区划,隶属高雄州,由高雄郡高雄街升格而来,二次大战后改为台湾省高雄市。于1924年12月25日由高雄州高雄郡高雄街升格