实际气体

✍ dations ◷ 2024-12-22 23:58:42 #实际气体
在研究气体时,现实情况下气体分子间的相互作用力不能忽略时,气体状态方程则会偏离与压力,密度和温度的线性关系,在应用理想气体的理论时会引起一定的偏差。与理想气体相对,称为实际气体或真实气体。R T = ( P + a V m 2 ) ( V m − b ) {displaystyle RT=(P+{frac {a}{V_{m}^{2}}})(V_{m}-b)}对于上式,a是同分子引力有关的常数,b是同分子自身体积有关的常数,统称为范德华常数,Vm为气体的摩尔体积,p是气体的压强,V是气体的体积,T为热力学温度,R=8.314J·mol-1·K-1雷德利希-邝氏方程是另一个实际气体二元方程。比 范德华方程更精确,同时比大多数多元实际气体方程精确。R T = P ( V m − b ) + a V m ( V m + b ) T 1 2 ( V m − b ) {displaystyle RT=P(V_{m}-b)+{frac {a}{V_{m}(V_{m}+b)T^{frac {1}{2}}}}(V_{m}-b)}注意这里的常数a,b与范德华方程中的不同。 a = 0.4275 R 2 T c 2.5 P c {displaystyle a=0.4275{frac {R^{2}T_{c}^{2.5}}{P_{c}}}}b = 0.0867 R T c P c {displaystyle b=0.0867{frac {RT_{c}}{P_{c}}}}贝特罗方程极少使用。P = R T V m − b − a T V m 2 {displaystyle P={frac {RT}{V_{m}-b}}-{frac {a}{TV_{m}^{2}}}}修正式更为精确:P = R T V m [ 1 + 9 P / P c 128 T / T c ( 1 − 6 ( T / T c ) 2 ) ] {displaystyle P={frac {RT}{V_{m}}}left}狄特里奇方程近年来亦很少使用。 P = R T exp ⁡ ( − a V m R T ) V m − b {displaystyle P=RT{frac {exp {({frac {-a}{V_{m}RT}})}}{V_{m}-b}}} .克劳修斯方程是非常简洁的三元实际气体方程。R T = ( P + a T ( V m + c ) 2 ) ( V m − b ) {displaystyle RT=left(P+{frac {a}{T(V_{m}+c)^{2}}}right)(V_{m}-b)}其中a = 27 R 2 T c 3 64 P c {displaystyle a={frac {27R^{2}T_{c}^{3}}{64P_{c}}}}b = V c − R T c 4 P c {displaystyle b=V_{c}-{frac {RT_{c}}{4P_{c}}}}c = 3 R T c 8 P c − V c {displaystyle c={frac {3RT_{c}}{8P_{c}}}-V_{c}}维里方程 P V m = R T ( 1 + B ( T ) V m + C ( T ) V m 2 + D ( T ) V m 3 + . . . ) {displaystyle PV_{m}=RTleft(1+{frac {B(T)}{V_{m}}}+{frac {C(T)}{V_{m}^{2}}}+{frac {D(T)}{V_{m}^{3}}}+...right)}或P V m = R T ( 1 + B ′ ( T ) P + C ′ ( T ) P 2 + D ′ ( T ) P 3 + . . . ) {displaystyle PV_{m}=RTleft(1+{frac {B^{prime }(T)}{P}}+{frac {C^{prime }(T)}{P^{2}}}+{frac {D^{prime }(T)}{P^{3}}}+...right)}其中 A, B, C, A′, B′, C′ 是温度依赖常数。其中其中这个方程在密度0.8 ρcr以下时较为精确, 其中 ρcr是物质的临界点密度。 方程中的常数如下表所列: P的单位是kPa, V的单位是 m 3 K m o l {displaystyle {frac {m^{3}}{Kmol}}} , R=8.314 k P a . m 3 K m o l . K {displaystyle {frac {kPa.m^{3}}{Kmol.K}}}BWR方程P = R T d + d 2 ( R T ( B + b d ) − ( A + a d − a α d 4 ) − 1 T 2 [ C − c d ( 1 + γ d 2 ) exp ⁡ ( − γ d 2 ) ] ) {displaystyle P=RTd+d^{2}left(RT(B+bd)-(A+ad-a{alpha }d^{4})-{frac {1}{T^{2}}}right)}其中d是摩尔密度; a, b, c, A, B, C, α, γ 是经验常数。

相关

  • 血压计血压计是用于测量血压的医疗仪器。现在常见的血压计设计有水银柱式血压计、电子血压计和气压表式血压计(表型气压式血压计)三种。电子血压计除了能显示血压读数外,亦有提供脉搏
  • 运动失调共济失调(英语:Ataxia)是指缺乏规律,或者为笨拙,为一种神经疾病上的特征。失调可以广泛指在中枢神经系统、周围神经系统任何其中一环出状况所表现的病征,例如掌管运动和平衡的小脑
  • 保罗·劳特伯保罗·克里斯琴·劳特伯(英语:Paul Christian Lauterbur,1929年5月6日-2007年3月27日),美国化学家,美国匹兹堡大学博士毕业。由于在核磁共振成像的研究,他与英国科学家彼得·曼斯菲
  • 瑞利散射瑞利散射(Rayleigh scattering),由英国物理学家约翰·斯特拉特,第三代瑞利男爵(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他电磁辐射的波长小很多的微小颗粒
  • 地坛公园地坛(满语:ᠨᠠ ᡳᠮᡠᡍᡩᡝᡥᡠᠨ 转写:na i mukdehun)在中国北京安定门外,是明世宗以后明清两代皇帝每年夏至祭祀土地神的地方,20世纪后逐渐开辟为公园。地坛建于明嘉靖九年(1
  • 昆曲昆曲是中国戏曲的剧种之一,发源于元末明初的苏州府昆山县(今江苏省苏州市昆山市巴城镇),起初流行于江南一带,而后风靡全国;盛清时,上至宫廷贵族、下至贩夫走卒皆热爱昆曲。有俗谚云
  • 车里雅宾斯克车里雅宾斯克州(俄语:Челя́бинская о́бласть,罗马化:Chelyabinskaya oblast)位于乌拉尔山脉东麓、西西伯利亚平原西南部,是俄罗斯联邦主体。面积87,900平方公
  • 荷兰议会执政联盟(38)在野党(37)联合政府(76)在野党(74)国会(荷兰语:Staten-Generaal)是荷兰王国的两院制立法机构,包括一院(Eerste Kamer)(上议院,即参议院)和二院(Tweede Kamer)(下议院,即众议院)。国会
  • 示威者抗议是一种对事件或情况强烈反应的表达。这个词语通常意味着对某事反对的反应,而以前亦可以表示是为了某事的反应。抗议者可能通过公开、有力的方式组织抗议,使其意见被听取,来
  • 渤海海峡渤海海峡位于辽东半岛和山东半岛之间,海峡宽约90公里,向东连接黄海,向西连接渤海,是中华人民共和国环渤海地区海运交通的唯一海上通道,与台湾海峡、琼州海峡并称中国三大海峡。