首页 >
实际气体
✍ dations ◷ 2025-09-18 23:33:07 #实际气体
在研究气体时,现实情况下气体分子间的相互作用力不能忽略时,气体状态方程则会偏离与压力,密度和温度的线性关系,在应用理想气体的理论时会引起一定的偏差。与理想气体相对,称为实际气体或真实气体。R
T
=
(
P
+
a
V
m
2
)
(
V
m
−
b
)
{displaystyle RT=(P+{frac {a}{V_{m}^{2}}})(V_{m}-b)}对于上式,a是同分子引力有关的常数,b是同分子自身体积有关的常数,统称为范德华常数,Vm为气体的摩尔体积,p是气体的压强,V是气体的体积,T为热力学温度,R=8.314J·mol-1·K-1雷德利希-邝氏方程是另一个实际气体二元方程。比 范德华方程更精确,同时比大多数多元实际气体方程精确。R
T
=
P
(
V
m
−
b
)
+
a
V
m
(
V
m
+
b
)
T
1
2
(
V
m
−
b
)
{displaystyle RT=P(V_{m}-b)+{frac {a}{V_{m}(V_{m}+b)T^{frac {1}{2}}}}(V_{m}-b)}注意这里的常数a,b与范德华方程中的不同。
a
=
0.4275
R
2
T
c
2.5
P
c
{displaystyle a=0.4275{frac {R^{2}T_{c}^{2.5}}{P_{c}}}}b
=
0.0867
R
T
c
P
c
{displaystyle b=0.0867{frac {RT_{c}}{P_{c}}}}贝特罗方程极少使用。P
=
R
T
V
m
−
b
−
a
T
V
m
2
{displaystyle P={frac {RT}{V_{m}-b}}-{frac {a}{TV_{m}^{2}}}}修正式更为精确:P
=
R
T
V
m
[
1
+
9
P
/
P
c
128
T
/
T
c
(
1
−
6
(
T
/
T
c
)
2
)
]
{displaystyle P={frac {RT}{V_{m}}}left}狄特里奇方程近年来亦很少使用。
P
=
R
T
exp
(
−
a
V
m
R
T
)
V
m
−
b
{displaystyle P=RT{frac {exp {({frac {-a}{V_{m}RT}})}}{V_{m}-b}}}
.克劳修斯方程是非常简洁的三元实际气体方程。R
T
=
(
P
+
a
T
(
V
m
+
c
)
2
)
(
V
m
−
b
)
{displaystyle RT=left(P+{frac {a}{T(V_{m}+c)^{2}}}right)(V_{m}-b)}其中a
=
27
R
2
T
c
3
64
P
c
{displaystyle a={frac {27R^{2}T_{c}^{3}}{64P_{c}}}}b
=
V
c
−
R
T
c
4
P
c
{displaystyle b=V_{c}-{frac {RT_{c}}{4P_{c}}}}c
=
3
R
T
c
8
P
c
−
V
c
{displaystyle c={frac {3RT_{c}}{8P_{c}}}-V_{c}}维里方程
P
V
m
=
R
T
(
1
+
B
(
T
)
V
m
+
C
(
T
)
V
m
2
+
D
(
T
)
V
m
3
+
.
.
.
)
{displaystyle PV_{m}=RTleft(1+{frac {B(T)}{V_{m}}}+{frac {C(T)}{V_{m}^{2}}}+{frac {D(T)}{V_{m}^{3}}}+...right)}或P
V
m
=
R
T
(
1
+
B
′
(
T
)
P
+
C
′
(
T
)
P
2
+
D
′
(
T
)
P
3
+
.
.
.
)
{displaystyle PV_{m}=RTleft(1+{frac {B^{prime }(T)}{P}}+{frac {C^{prime }(T)}{P^{2}}}+{frac {D^{prime }(T)}{P^{3}}}+...right)}其中 A, B, C, A′, B′, C′ 是温度依赖常数。其中其中这个方程在密度0.8 ρcr以下时较为精确, 其中 ρcr是物质的临界点密度。 方程中的常数如下表所列:
P的单位是kPa, V的单位是
m
3
K
m
o
l
{displaystyle {frac {m^{3}}{Kmol}}}
, R=8.314
k
P
a
.
m
3
K
m
o
l
.
K
{displaystyle {frac {kPa.m^{3}}{Kmol.K}}}BWR方程P
=
R
T
d
+
d
2
(
R
T
(
B
+
b
d
)
−
(
A
+
a
d
−
a
α
d
4
)
−
1
T
2
[
C
−
c
d
(
1
+
γ
d
2
)
exp
(
−
γ
d
2
)
]
)
{displaystyle P=RTd+d^{2}left(RT(B+bd)-(A+ad-a{alpha }d^{4})-{frac {1}{T^{2}}}right)}其中d是摩尔密度; a, b, c, A, B, C, α, γ 是经验常数。
相关
- 心血管系统循环系统(英语:circulatory system),也称为心血管系统(英语:cardiovascular system)或血管系统(英语:vascular system)是负责血液循环,在细胞间传送养分(如氨基酸及电解质)、氧气、二氧化
- 长生不老长生不老,指寿命长而不会衰老。相近的辞汇还有长生不死(在安全无外力状况下拥有无限的寿命,但依旧会老化)、不老不死(在安全无外力状况下不会衰老与死亡)、不朽(Immortality)与永生(
- 分分是中文传统小数单位之一,一分等于十分之一,即1/10或10%;现在也用来作为国际单位制词头之一,对应英文是“deci-”,表示十分之一。“分”这个词头用得不多,最多是用在分贝和分米。
- 儿科学小儿科(或称儿科)是现代医学的一个分支,专门医疗患病的婴儿、儿童及青少年。最大的年龄通常至青春期。一个受到这方面知识专门训练的医生被称作儿科医生。
- 交通安全交通安全、运输安全或道路安全,是所有提高道路运输的安全性(包括参加交通的人以及交通工具)的措施的总称。道路安全措施可以大略地分为主动安全措施(防止交通事故发生)和被动措施
- 马尾藻约250种。马尾藻,是马尾藻科马尾藻属一类褐藻的总称,现约包括250个种。藻体分固着器、茎、叶、气囊四部分,雌雄同株或异株;成熟时在叶腋长出生殖托。马尾藻生长于中、低潮间带的
- 三官大帝三官大帝,指的是道教中掌管天界(天府)、地界(地府)、水界(水府)三界之神天官、地官和水官,闽南语俗称“三界公”,客家话称为“三界爷”,又称“三元大帝”。三位神明掌握三界间的一切行
- 三只小猪三只小猪,是一则著名的英国童话,以会说话的动物为主角。其出现时间可能是18世纪或更早,但正式书面出版于1840年代(但与1812年出版的《格林童话》里一则故事雷同)。目前三只小猪已
- 袋狸目 Peramelemorphia袋狸目(Peramelemorphia)是包括了袋狸及兔袋狸的一目,接近“杂食性有袋类”的主支。其下所有成员都是澳洲及新畿内亚的原住民,大部分都有袋狸的体态:肥胖、弓背、尖长的吻、很大
- 国际学校本列表罗列出在台湾设立的国际学校,依照《私立高级中等以下外国侨民学校及附设幼稚园设立及管理办法》,此类学校专门接受具有外国国籍的人士就读。教育部:外国侨民学校通讯一览