实际气体

✍ dations ◷ 2025-11-24 20:38:24 #实际气体
在研究气体时,现实情况下气体分子间的相互作用力不能忽略时,气体状态方程则会偏离与压力,密度和温度的线性关系,在应用理想气体的理论时会引起一定的偏差。与理想气体相对,称为实际气体或真实气体。R T = ( P + a V m 2 ) ( V m − b ) {displaystyle RT=(P+{frac {a}{V_{m}^{2}}})(V_{m}-b)}对于上式,a是同分子引力有关的常数,b是同分子自身体积有关的常数,统称为范德华常数,Vm为气体的摩尔体积,p是气体的压强,V是气体的体积,T为热力学温度,R=8.314J·mol-1·K-1雷德利希-邝氏方程是另一个实际气体二元方程。比 范德华方程更精确,同时比大多数多元实际气体方程精确。R T = P ( V m − b ) + a V m ( V m + b ) T 1 2 ( V m − b ) {displaystyle RT=P(V_{m}-b)+{frac {a}{V_{m}(V_{m}+b)T^{frac {1}{2}}}}(V_{m}-b)}注意这里的常数a,b与范德华方程中的不同。 a = 0.4275 R 2 T c 2.5 P c {displaystyle a=0.4275{frac {R^{2}T_{c}^{2.5}}{P_{c}}}}b = 0.0867 R T c P c {displaystyle b=0.0867{frac {RT_{c}}{P_{c}}}}贝特罗方程极少使用。P = R T V m − b − a T V m 2 {displaystyle P={frac {RT}{V_{m}-b}}-{frac {a}{TV_{m}^{2}}}}修正式更为精确:P = R T V m [ 1 + 9 P / P c 128 T / T c ( 1 − 6 ( T / T c ) 2 ) ] {displaystyle P={frac {RT}{V_{m}}}left}狄特里奇方程近年来亦很少使用。 P = R T exp ⁡ ( − a V m R T ) V m − b {displaystyle P=RT{frac {exp {({frac {-a}{V_{m}RT}})}}{V_{m}-b}}} .克劳修斯方程是非常简洁的三元实际气体方程。R T = ( P + a T ( V m + c ) 2 ) ( V m − b ) {displaystyle RT=left(P+{frac {a}{T(V_{m}+c)^{2}}}right)(V_{m}-b)}其中a = 27 R 2 T c 3 64 P c {displaystyle a={frac {27R^{2}T_{c}^{3}}{64P_{c}}}}b = V c − R T c 4 P c {displaystyle b=V_{c}-{frac {RT_{c}}{4P_{c}}}}c = 3 R T c 8 P c − V c {displaystyle c={frac {3RT_{c}}{8P_{c}}}-V_{c}}维里方程 P V m = R T ( 1 + B ( T ) V m + C ( T ) V m 2 + D ( T ) V m 3 + . . . ) {displaystyle PV_{m}=RTleft(1+{frac {B(T)}{V_{m}}}+{frac {C(T)}{V_{m}^{2}}}+{frac {D(T)}{V_{m}^{3}}}+...right)}或P V m = R T ( 1 + B ′ ( T ) P + C ′ ( T ) P 2 + D ′ ( T ) P 3 + . . . ) {displaystyle PV_{m}=RTleft(1+{frac {B^{prime }(T)}{P}}+{frac {C^{prime }(T)}{P^{2}}}+{frac {D^{prime }(T)}{P^{3}}}+...right)}其中 A, B, C, A′, B′, C′ 是温度依赖常数。其中其中这个方程在密度0.8 ρcr以下时较为精确, 其中 ρcr是物质的临界点密度。 方程中的常数如下表所列: P的单位是kPa, V的单位是 m 3 K m o l {displaystyle {frac {m^{3}}{Kmol}}} , R=8.314 k P a . m 3 K m o l . K {displaystyle {frac {kPa.m^{3}}{Kmol.K}}}BWR方程P = R T d + d 2 ( R T ( B + b d ) − ( A + a d − a α d 4 ) − 1 T 2 [ C − c d ( 1 + γ d 2 ) exp ⁡ ( − γ d 2 ) ] ) {displaystyle P=RTd+d^{2}left(RT(B+bd)-(A+ad-a{alpha }d^{4})-{frac {1}{T^{2}}}right)}其中d是摩尔密度; a, b, c, A, B, C, α, γ 是经验常数。

相关

  • Mayo Clinic坐标:44°1′20″N 92°28′0″W / 44.02222°N 92.46667°W / 44.02222; -92.46667梅奥诊所医学中心(英语:Mayo Clinic),又译为梅奥诊所、梅约诊所、马约诊所,是世界最著名的医疗
  • Taenia solium猪带绦虫(学名:Taenia solium;pork tapeworm),也称有钩绦虫或链状带绦虫,体长2-3米,宽7-8毫米,共有800-900个节片,后端成熟节片长约10毫米。
  • 鸡雁小纲鸡雁小纲(学名:Galloanserae)是指雁形目及鸡形目两目的鸟类。它们在解剖及分子、形态及DNA序列、与及反转录转座子标记上的相似,显示它们是演化上的近亲。虽然鸡雁小纲的成员在
  • 运动辅助区运动辅助区(英:Supplementary Motor Area, SMA 或 Supplementary motor cortex, SMC)是大脑皮质的一个主要与运动功能相关的区域。在解剖位置上来说,SMA位于脑半球的内侧面,和初
  • 阿夸维特阿夸维特(Aquavit, Akvavit),是主要生产于斯堪的纳维亚地区的一种加味蒸馏酒,酒精浓度一般为40%,其历史可追溯至15世纪。阿夸维特与伏特加的主原料相近,为谷类与马铃薯,而其特殊香
  • 甘露聚糖结合凝集素1HUP· protein binding · mannose binding · eukaryotic cell surface binding · calcium-dependent protein binding· collagen· acute-phase response · compl
  • 微型发电可持续发展主题可再生能源主题环境主题微型发电是一种小规模的发电模式,电能由个人、小企业或社区自行生产,以满足自身需求,目的是辅助甚至取代集中式电网,减少电网稳定性问题,避
  • Adobe AcrobatWindows20.006.20034(2020年2月11日,​38天前​(2020-02-11))macOS20.006.20034(2020年2月11日,​38天前​(2020-02-11))Android20.0.1(2020年1月28日,​52天前​(2020-01-28))iOS20.01.00(2
  • 高雄捷运公司坐标:22°34′56.7″N 121°19′52.0″E / 22.582417°N 121.331111°E / 22.582417; 121.331111高雄捷运股份有限公司(英语:Kaohsiung Rapid Transit Corporation,简称高捷公司
  • 量子网络量子网络(英语:quantum network),是指在多个通信节点间,利用量子密钥分发进行安全通信的网络。各节点间产生的量子密钥可以对传统的语音、图像以及数字多媒体等通信数据进行加密