首页 >
几何拓扑
✍ dations ◷ 2025-11-29 08:42:34 #几何拓扑
几何拓扑学是数学中研究流形以及它们的嵌入的分支,俱代表性的主题有纽结理论和辫子群。纽结理论和辫子群是几何拓扑学研究范围的典型例子。随着时间的变迁几何拓扑学几乎等同于考虑二维、三维、或者四维的低维拓扑学。1945年后拓扑学发展迅速,逐渐地数学家将这个学科分为三个分支:这些分支的基础是研究一般的拓扑空间的点集拓扑学。但是随着时间的发展这些区分又越来越显得是人为的区分了。1960年代初开始的许多研究成果导致几何拓扑学本身变化了。1961年史提芬·斯梅尔解决了高维中的庞加莱猜想,这使得三维和四维显得尤其困难。事实上这些困难的解决需要新的技术,而与此同时高维提供的自由度使得换球术的问题也成为可计算的问题了。威廉·瑟斯顿在1970年代末提出的几何化猜想提供了在低维中几何与拓扑之间的关系的理论基础。瑟斯顿使用过去在数学中只是很弱地互相关联的分支的不同技术解决了Haken流体的几何化问题。1980年代初沃恩·琼斯发现的琼斯多项式为扭结理论提供了新的方向,同时也给数学物理与低维拓扑学之间至今为止依然不明了的关系提供了新的推动。这些发展使得几何拓扑学被更好地引用于数学的其它领域了。
相关
- 室内室内空气质量(IAQ)是指建筑物及建筑物内以及附近的空气质量,这会影响在建筑物内生活人们的健康及舒适。室内空气质量会受气体(特别是一氧化碳、氡、挥发性有机物)、悬浮粒子、微
- 梅奥医院坐标:44°1′20″N 92°28′0″W / 44.02222°N 92.46667°W / 44.02222; -92.46667梅奥诊所医学中心(英语:Mayo Clinic),又译为梅奥诊所、梅约诊所、马约诊所,是世界最著名的医疗
- 心理学家列表本条目按字母顺序列举显著的心理学家。目录 A B C D E F G H I J K L M N O P Q R S T U V W X Y ZAndrés Qiu 1980年代著名的心理学家 出生地西班牙
- 犀牛犀牛是犀科(学名:Rhinocerotidae)动物的总称,属哺乳纲奇蹄目,主要分布于非洲和东南亚。是最大的奇蹄目动物,也是体型仅次于大象的大型陆地动物。所有的犀牛基本上都是腿短和身体粗
- 诺曼底诺曼底(法语:Normandie,发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gen
- 普罗旺斯-阿尔卑斯-蓝色海岸普罗旺斯-阿尔卑斯-蓝色海岸(法语:Provence-Alpes-Côte d'Azur)是法国东南部的一个大区,南邻地中海。面积31,400平方公里,人口4,506,151人。下辖上普罗旺斯阿尔卑斯省(04)、上阿尔
- 瓦拉赫奥托·瓦拉赫(德语:Otto Wallach,1847年3月27日-1931年2月26日),德国化学家,1910年以研究脂环族化合物而获得诺贝尔化学奖。1847年,瓦拉赫出生于柯尼斯堡,他的父亲是一位信仰路德教的
- 凯内马凯内马(英语:Kenema)是塞拉利昂的第三大城市,2004年普查人口294,539。该城位于该国东南部,距首都弗里敦约185英里,是东部省和凯内马区的首府和行政中心。凯内马沿着一条已关闭的铁
- 路易斯结构路易斯结构(英语:Lewis structures),又称路易斯点图像、电子点图像、路易斯电子点式、路易斯点结构、电子点结构,是分子中原子和原子键结和标示孤对电子存在的图像。 路易斯结构
- 国家和平与发展委员会殖民时期:现代:政治主题国家和平与发展委员会(缅甸语:နိုင်ငံတော်အေးချမ်းသာယာရေးနှင့်ဖွံ့ဖြိုးရေးကောင်စီ)为缅甸军政府时
