首页 >
定理
✍ dations ◷ 2025-02-23 07:06:47 #定理
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些
a
{displaystyle a}
是
x
{displaystyle x}
,某些
a
{displaystyle a}
是
y
{displaystyle y}
,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。在命题逻辑,所有已证明的叙述都称为定理。定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。若存在某叙述为
A
→
B
{displaystyle Arightarrow B}
,其逆叙述就是
B
→
A
{displaystyle Brightarrow A}
。逆叙述成立的情况是
A
↔
B
{displaystyle Aleftrightarrow B}
,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理指的是在一阶逻辑中的定理,通常来说任意一个命题集合往往不一定是定理)。定理在逻辑中的定义︰这个定理(或这个命题集合)我们记作
T
{displaystyle T}
,这些建立于语言集合
L
{displaystyle L}
上的命题必须符合如下属性:比如一个永真命题集合是一个定理,这个永真命题集合被包含在所有建立在语言集合
L
{displaystyle L}
上的定理中。此外,我们说一个定理是另外一个定理
T
{displaystyle T}
的扩展(extension),前提是该定理包含定理
T
{displaystyle T}
。有一个命题集合
A
{displaystyle A}
,我们将一个包含
A
{displaystyle A}
的集合记作
Th
(
A
)
{displaystyle {mbox{Th}}(A)}
,那么
Th
(
A
)
=
{
φ
|
A
⊨
φ
}
{displaystyle {mbox{Th}}(A)={ varphi | AvDash varphi }}
。显而易见
A
⊨
Th
(
A
)
{displaystyle AvDash {mbox{Th}}(A)}
,所以
Th
(
A
)
{displaystyle {mbox{Th}}(A)}
是一个定理。比如我们有一个集合
G
{displaystyle G}
,
G
{displaystyle G}
有三个基于语言
L
{displaystyle L}
上的命题,其中
L
=
{
e
,
f
}
{displaystyle L={e,f}}
,
e
{displaystyle e}
是常数符号,
f
{displaystyle f}
是函数符号。三个命题如下:那么如果有
Th
(
G
)
=
{
φ
|
G
⊨
φ
}
{displaystyle {mbox{Th}}(G)={ varphi | GvDash varphi }}
,则
Th
(
G
)
{displaystyle {mbox{Th}}(G)}
是
G
{displaystyle G}
的定理。当然,如果
A
{displaystyle A}
和
B
{displaystyle B}
是两个命题集合且满足
A
⊆
B
{displaystyle Asubseteq B}
,那么
Th
(
A
)
⊆
Th
(
B
)
{displaystyle {mbox{Th}}(A)subseteq {mbox{Th}}(B)}
。我们说一个定理
T
{displaystyle T}
是完整的(Complete),当且仅当对于和
T
{displaystyle T}
一样构建在同样语言集合上的所有命题
φ
{displaystyle varphi }
,要么
φ
∈
T
{displaystyle varphi in T}
,要么
¬
φ
∈
T
{displaystyle lnot varphi in T}
。不是所有的定理是完整的。比如
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
一个空集合
{
Φ
}
{displaystyle {Phi }}
的定理是所有真命题集合,但是
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
不是完整的。假如有命题
Ψ
=
∃
x
∃
y
(
x
≠
y
)
{displaystyle Psi =exists xexists y(xneq y)}
,对于
Ψ
{displaystyle Psi }
来说,它既不是永真命题,也不是永假命题,它是一个可满足式的命题,也就是说
Th
(
Φ
)
⊭
Ψ
{displaystyle {mbox{Th}}(Phi )nvDash Psi }
且
Th
(
Φ
)
⊭
¬
Ψ
{displaystyle {mbox{Th}}(Phi )nvDash lnot Psi }
。因此
Ψ
∉
Th
(
Φ
)
{displaystyle Psi notin {mbox{Th}}(Phi )}
,所以我们说
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
不是完整的。
一个定理
T
{displaystyle T}
称作是稳健的(Consistante),当且仅当
∀
φ
∈
T
,
¬
φ
∉
T
{displaystyle forall varphi in T, lnot varphi notin T}
。我们说对所有的解释(Interpretation)
I
{displaystyle I}
,
Th
(
I
)
{displaystyle {mbox{Th}}(I)}
是一个定理,并且
Th
(
I
)
{displaystyle {mbox{Th}}(I)}
既是稳健的又是完整的。
相关
- 影像诊断学影像诊断学(英语:Radiology)是通过特殊手段,展示患者身体内部结构的影像,揭示有无病变及对病变进行定性和/或定量分析,是现代医学极其重要的一个分支,也是现代医学中发展最快,取得成
- 科科(英文: family, 拉丁语:familia)是生物分类法中的一级,位于目和属之间,现时生物界约有800个科,科下也分亚科,而在其上亦有总科。亚科是生物分类法的一级,在科和属之间,有时亚科和属
- 外呼吸外呼吸是指氧与二氧化碳在肺脏内与其周围微血管血液间所进行的气体交换,相对的概念是内呼吸(指一般细胞内与微血管血液间的气体交换。
- 喂母乳母乳哺育(Breastfeeding),亦称哺乳、授乳或母乳喂养,指的是女性以乳房喂食婴儿母乳的行为。婴儿有吮吸反射,因此可以吮吸乳房并吞咽母乳,专家建议在出生后一小时即可哺喂母乳,之后
- 阿米卡霉素阿米卡星(amikacin、amikin (amikacin))是一种氨基糖苷类抗生素,用于治疗多种细菌感染。阿米卡星依靠于细菌30S亚基结合,阻断细菌蛋白质合成而起到抗菌作用。阿米卡星一天可以给
- J. Am. Chem. Soc.《美国化学会志》(英语:Journal of the American Chemical Society,或译美国化学会期刊、美国化学学会期刊),常用缩写为J. Am. Chem. Soc.和JACS,是美国化学学会发行的学术期刊,于1
- 维博瓦伦蒂亚维博瓦伦蒂亚(意大利语:Vibo Valentia),是意大利维博瓦伦蒂亚省的一个市镇。总面积46.34平方公里,人口33813人,人口密度729.7人/平方公里(2009年)。
- 肉瘤肉瘤(英语:sarcoma;希腊语:σάρκωμα,sárkomma,源于sárka,意为肉、软组织,词尾~om指肿瘤)是一种恶性肿瘤,组织来源为支持组织—间胚叶组织(准确一点,来自中胚层)。与上皮组织恶性
- 脚趾脚趾是人或一些动物的脚上的指头。人的脚趾的背部受指甲的保护,其他动物则演变成爪。人类脚趾在生理学上扮演的意义不亚于双手,在演化学的研究中相当重要。现代人的双脚绝大多
- 线粒体脑肌病线粒体脑肌病是一种由线粒体的代谢缺陷脱引起的脑肌病,属于线粒体疾病。此病由Luft于1962年首次采用改良戈莫理氏染色法(Gömöri trichrome stain,MGT)发现。在活体检查中,患者