定理

✍ dations ◷ 2025-11-15 06:48:15 #定理
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些 a {displaystyle a} 是 x {displaystyle x} ,某些 a {displaystyle a} 是 y {displaystyle y} ,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。在命题逻辑,所有已证明的叙述都称为定理。定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。若存在某叙述为 A → B {displaystyle Arightarrow B} ,其逆叙述就是 B → A {displaystyle Brightarrow A} 。逆叙述成立的情况是 A ↔ B {displaystyle Aleftrightarrow B} ,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理指的是在一阶逻辑中的定理,通常来说任意一个命题集合往往不一定是定理)。定理在逻辑中的定义︰这个定理(或这个命题集合)我们记作 T {displaystyle T} ,这些建立于语言集合 L {displaystyle L} 上的命题必须符合如下属性:比如一个永真命题集合是一个定理,这个永真命题集合被包含在所有建立在语言集合 L {displaystyle L} 上的定理中。此外,我们说一个定理是另外一个定理 T {displaystyle T} 的扩展(extension),前提是该定理包含定理 T {displaystyle T} 。有一个命题集合 A {displaystyle A} ,我们将一个包含 A {displaystyle A} 的集合记作 Th ( A ) {displaystyle {mbox{Th}}(A)} ,那么 Th ( A ) = {   φ     |     A ⊨ φ   } {displaystyle {mbox{Th}}(A)={ varphi | AvDash varphi }} 。显而易见 A ⊨ Th ( A ) {displaystyle AvDash {mbox{Th}}(A)} ,所以 Th ( A ) {displaystyle {mbox{Th}}(A)} 是一个定理。比如我们有一个集合 G {displaystyle G} , G {displaystyle G} 有三个基于语言 L {displaystyle L} 上的命题,其中 L = { e , f } {displaystyle L={e,f}} , e {displaystyle e} 是常数符号, f {displaystyle f} 是函数符号。三个命题如下:那么如果有 Th ( G ) = {   φ     |     G ⊨ φ   } {displaystyle {mbox{Th}}(G)={ varphi | GvDash varphi }} ,则 Th ( G ) {displaystyle {mbox{Th}}(G)} 是 G {displaystyle G} 的定理。当然,如果 A {displaystyle A} 和 B {displaystyle B} 是两个命题集合且满足 A ⊆ B {displaystyle Asubseteq B} ,那么 Th ( A ) ⊆ Th ( B ) {displaystyle {mbox{Th}}(A)subseteq {mbox{Th}}(B)} 。我们说一个定理 T {displaystyle T} 是完整的(Complete),当且仅当对于和 T {displaystyle T} 一样构建在同样语言集合上的所有命题 φ {displaystyle varphi } ,要么 φ ∈ T {displaystyle varphi in T} ,要么 ¬ φ ∈ T {displaystyle lnot varphi in T} 。不是所有的定理是完整的。比如 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 一个空集合 { Φ } {displaystyle {Phi }} 的定理是所有真命题集合,但是 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 不是完整的。假如有命题 Ψ = ∃ x ∃ y ( x ≠ y ) {displaystyle Psi =exists xexists y(xneq y)} ,对于 Ψ {displaystyle Psi } 来说,它既不是永真命题,也不是永假命题,它是一个可满足式的命题,也就是说 Th ( Φ ) ⊭ Ψ {displaystyle {mbox{Th}}(Phi )nvDash Psi } 且 Th ( Φ ) ⊭ ¬ Ψ {displaystyle {mbox{Th}}(Phi )nvDash lnot Psi } 。因此 Ψ ∉ Th ( Φ ) {displaystyle Psi notin {mbox{Th}}(Phi )} ,所以我们说 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 不是完整的。 一个定理 T {displaystyle T} 称作是稳健的(Consistante),当且仅当 ∀ φ ∈ T ,   ¬ φ ∉ T {displaystyle forall varphi in T, lnot varphi notin T} 。我们说对所有的解释(Interpretation) I {displaystyle I} , Th ( I ) {displaystyle {mbox{Th}}(I)} 是一个定理,并且 Th ( I ) {displaystyle {mbox{Th}}(I)} 既是稳健的又是完整的。

相关

  • 黑色素黑色素是生物色素,是酪胺酸经过一连串化学反应所形成,动物、植物与原生生物都有这种色素。黑色素通常是以聚合的方式存在。在黑色素细胞中,酪氨酸经酪氨酸酶作用,羟化生成多巴,后
  • Q热Q型流感或羊流感(英语:Q fever或Goat flu),又称Q热或寇热,是指一种在荷兰爆发的新流感。这种流感由贝纳氏立克次体(学名:Coxiella burnetii)细菌引起 。这种流感能够通过羊群传染给
  • 西咪替丁西咪替丁(INN:cimetidine),也称甲氰咪胍、西米替丁或希美得定,商品名称为泰胃美(Tagamet),是一种组胺H2受体阻抗剂,主要用于抑制胃酸的分泌,并用于治疗胃灼热和消化道溃疡。在英国,西咪
  • 视觉化视觉化(英文:Visulation),又称为可视化模拟或者可视化仿真,是指其中对于特定系统的可视化与计算机模拟同时进行的一种混合过程。许多的用于GPGPU程序之中都包括有视觉化过程;通常,
  • 都市生态学都市生态学是应用自然生态学的理论分别理解人类社会的一种科学。芝加哥学派也常用都市生态学研究都市问题。其内容包括生态、组织、竞争、进化、入侵、均衡等自然定律。都市
  • 近东近东,早期近代西方地理学者以“近东”指邻近欧洲的“东方”。欧美人使用的词汇,以他们所处的位置来讲,指地中海东部沿岸地区,包括非洲东北部和亚洲西南部,有时还包括巴尔干半岛。
  • 迈锡尼文明迈锡尼文明(英语:Mycenaean Greece 法文: Civilisation mycénne,前1600年 – 前1100年) 是希腊青铜时代晚期的文明,它由伯罗奔尼撒半岛的迈锡尼城而得名。这是古希腊青铜器时代
  • β-酮硫解酶缺乏症β-酮硫解酶缺乏症是一种罕见的常染色体隐性代谢疾病,全世界仅报告有50至60例。患者机体无法正确处理异亮氨酸或脂质分解产物,典型发作年龄为6个月至24个月。该病症由ACAT1基
  • 真空吸引器真空吸引器,亦称阴茎泵或是阴茎吸引器,是指一种医疗上用来治疗勃起障碍所使用的辅助器材。其原理是采用一筒状设计的器具套住阴茎后并抽气,使之筒内形成真空状态,使血液因负压原
  • 轻重读重读(stress)和重音(accent)在语言学中有时是接近同义的概念,皆指某音节在单字中或单字在句子中相对突显(prominent)的意思,不过在一些特别区分上,重音(accent)常常被应用在声音听觉