定理

✍ dations ◷ 2025-04-25 03:24:36 #定理
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些 a {displaystyle a} 是 x {displaystyle x} ,某些 a {displaystyle a} 是 y {displaystyle y} ,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。在命题逻辑,所有已证明的叙述都称为定理。定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。若存在某叙述为 A → B {displaystyle Arightarrow B} ,其逆叙述就是 B → A {displaystyle Brightarrow A} 。逆叙述成立的情况是 A ↔ B {displaystyle Aleftrightarrow B} ,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理指的是在一阶逻辑中的定理,通常来说任意一个命题集合往往不一定是定理)。定理在逻辑中的定义︰这个定理(或这个命题集合)我们记作 T {displaystyle T} ,这些建立于语言集合 L {displaystyle L} 上的命题必须符合如下属性:比如一个永真命题集合是一个定理,这个永真命题集合被包含在所有建立在语言集合 L {displaystyle L} 上的定理中。此外,我们说一个定理是另外一个定理 T {displaystyle T} 的扩展(extension),前提是该定理包含定理 T {displaystyle T} 。有一个命题集合 A {displaystyle A} ,我们将一个包含 A {displaystyle A} 的集合记作 Th ( A ) {displaystyle {mbox{Th}}(A)} ,那么 Th ( A ) = {   φ     |     A ⊨ φ   } {displaystyle {mbox{Th}}(A)={ varphi | AvDash varphi }} 。显而易见 A ⊨ Th ( A ) {displaystyle AvDash {mbox{Th}}(A)} ,所以 Th ( A ) {displaystyle {mbox{Th}}(A)} 是一个定理。比如我们有一个集合 G {displaystyle G} , G {displaystyle G} 有三个基于语言 L {displaystyle L} 上的命题,其中 L = { e , f } {displaystyle L={e,f}} , e {displaystyle e} 是常数符号, f {displaystyle f} 是函数符号。三个命题如下:那么如果有 Th ( G ) = {   φ     |     G ⊨ φ   } {displaystyle {mbox{Th}}(G)={ varphi | GvDash varphi }} ,则 Th ( G ) {displaystyle {mbox{Th}}(G)} 是 G {displaystyle G} 的定理。当然,如果 A {displaystyle A} 和 B {displaystyle B} 是两个命题集合且满足 A ⊆ B {displaystyle Asubseteq B} ,那么 Th ( A ) ⊆ Th ( B ) {displaystyle {mbox{Th}}(A)subseteq {mbox{Th}}(B)} 。我们说一个定理 T {displaystyle T} 是完整的(Complete),当且仅当对于和 T {displaystyle T} 一样构建在同样语言集合上的所有命题 φ {displaystyle varphi } ,要么 φ ∈ T {displaystyle varphi in T} ,要么 ¬ φ ∈ T {displaystyle lnot varphi in T} 。不是所有的定理是完整的。比如 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 一个空集合 { Φ } {displaystyle {Phi }} 的定理是所有真命题集合,但是 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 不是完整的。假如有命题 Ψ = ∃ x ∃ y ( x ≠ y ) {displaystyle Psi =exists xexists y(xneq y)} ,对于 Ψ {displaystyle Psi } 来说,它既不是永真命题,也不是永假命题,它是一个可满足式的命题,也就是说 Th ( Φ ) ⊭ Ψ {displaystyle {mbox{Th}}(Phi )nvDash Psi } 且 Th ( Φ ) ⊭ ¬ Ψ {displaystyle {mbox{Th}}(Phi )nvDash lnot Psi } 。因此 Ψ ∉ Th ( Φ ) {displaystyle Psi notin {mbox{Th}}(Phi )} ,所以我们说 Th ( Φ ) {displaystyle {mbox{Th}}(Phi )} 不是完整的。 一个定理 T {displaystyle T} 称作是稳健的(Consistante),当且仅当 ∀ φ ∈ T ,   ¬ φ ∉ T {displaystyle forall varphi in T, lnot varphi notin T} 。我们说对所有的解释(Interpretation) I {displaystyle I} , Th ( I ) {displaystyle {mbox{Th}}(I)} 是一个定理,并且 Th ( I ) {displaystyle {mbox{Th}}(I)} 既是稳健的又是完整的。

相关

  • 噻嗪噻嗪(英语:Thiazines)是指一类含有这样一种环的有机化合物:环含有四个碳原子、一个氮原子以及一个硫原子。具有噻嗪的化合物通常被用作为染料、安定药以及杀虫剂。
  • 蛋白酶蛋白酶(英语:protease)是生物体内的一类酶(酵素),它们能够分解蛋白质。分解方法是打断那些将氨基酸连结成多肽链的肽键。蛋白酶是重要的工业酶,占全球总酶销售量约六成,其中七成用于
  • 瘀斑瘀斑是指直径10毫米以上的皮下出血点。当身体被硬物捶击时,皮肤下的血管会破裂,造成血液流出到相邻的皮下组织,这些积聚在皮下组织的血液会在表皮外显现成瘀斑。通常小而痛淤斑
  • 温度温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温
  • 西进时期美国旧西部(American Old West或Wild West)是指美国领土扩张时期,美国西部的历史、地理、居民、文化等多元内涵,这段时间从十七世纪初的英国美洲殖民地到1912年建立最后一个美国
  • 采血静脉穿刺是以静脉注射或静脉血采样为目的而进行的刺穿静脉的医学操作。在所有入侵性医学流程中,静脉穿刺是最常见的一种。静脉穿刺的作用有很多,比如为诊断目的检测血液中的重
  • Dexedrine右旋安非他命(英语:Dextroamphetamine)是强力中枢神经兴奋剂,也是苯丙胺(“安非他命”) 的对映异构体,是注意力不足过动症(ADHD)和发作性嗜睡病的处方药。此外,它也被用作提升运动员能
  • 圣罗伦斯河圣劳伦斯河(英语:Saint Lawrence River,法语:Fleuve Saint-Laurent)是北美洲的河流。位于加拿大和美国境内。起源于安大略湖,流经蒙特利尔(加拿大境内)、魁北克市,在加斯佩地区注入大
  • 狄俄尼索斯·特拉克斯狄俄尼索斯·特拉克斯(希腊语:Διονύσιος ὁ Θρᾷξ,前170年-前90年),是生活于希腊化时期的一位语法学家,被一些人认为曾经在亚历山大里亚生活过,之后到罗得岛生活。西方
  • 关系代名词关系代名词(Relative Pronoun)是一类标明关系子句的代名词,其指称的对象和主句中由关系子句修饰的事物(通常是名词或名词词组)相同。汉语没有关系代名词。一个英语关系代名词