首页 >
定理
✍ dations ◷ 2025-04-02 16:39:31 #定理
定理(英语:Theorem)是经过受逻辑限制的证明为真的陈述。一般来说,在数学中,只有重要或有趣的陈述才叫定理。证明定理是数学的中心活动。一个定理陈述一个给定类的所有(全称)元素一种不变的关系,这些元素可以是无穷多,它们在任何时刻都无区别地成立,而没有一个例外。(例如:某些
a
{displaystyle a}
是
x
{displaystyle x}
,某些
a
{displaystyle a}
是
y
{displaystyle y}
,就不能算是定理)。猜想是相信为真但未被证明的数学叙述,或者叫做命题,当它经过证明后便是定理。猜想是定理的来源,但并非唯一来源。一个从其他定理引伸出来的数学叙述可以不经过成为猜想的过程,成为定理。如上所述,定理需要某些逻辑框架,继而形成一套公理(公理系统)。同时,一个推理的过程,容许从公理中引出新定理和其他之前发现的定理。在命题逻辑,所有已证明的叙述都称为定理。定理一般都有许多条件。然后有结论——一个在条件下成立的数学叙述。通常写作“若条件,则结论”。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。若存在某叙述为
A
→
B
{displaystyle Arightarrow B}
,其逆叙述就是
B
→
A
{displaystyle Brightarrow A}
。逆叙述成立的情况是
A
↔
B
{displaystyle Aleftrightarrow B}
,否则通常都是倒果为因,不合常理。若果叙述是定理,其成立的逆叙述就是逆定理。逻辑语言中的定理表示的是一个公式集合,并且该公式集合中的每一个公式都代表着知识的一个片段,由此我们可以给定理一个更准确的表达(这里所说的定理指的是在一阶逻辑中的定理,通常来说任意一个命题集合往往不一定是定理)。定理在逻辑中的定义︰这个定理(或这个命题集合)我们记作
T
{displaystyle T}
,这些建立于语言集合
L
{displaystyle L}
上的命题必须符合如下属性:比如一个永真命题集合是一个定理,这个永真命题集合被包含在所有建立在语言集合
L
{displaystyle L}
上的定理中。此外,我们说一个定理是另外一个定理
T
{displaystyle T}
的扩展(extension),前提是该定理包含定理
T
{displaystyle T}
。有一个命题集合
A
{displaystyle A}
,我们将一个包含
A
{displaystyle A}
的集合记作
Th
(
A
)
{displaystyle {mbox{Th}}(A)}
,那么
Th
(
A
)
=
{
φ
|
A
⊨
φ
}
{displaystyle {mbox{Th}}(A)={ varphi | AvDash varphi }}
。显而易见
A
⊨
Th
(
A
)
{displaystyle AvDash {mbox{Th}}(A)}
,所以
Th
(
A
)
{displaystyle {mbox{Th}}(A)}
是一个定理。比如我们有一个集合
G
{displaystyle G}
,
G
{displaystyle G}
有三个基于语言
L
{displaystyle L}
上的命题,其中
L
=
{
e
,
f
}
{displaystyle L={e,f}}
,
e
{displaystyle e}
是常数符号,
f
{displaystyle f}
是函数符号。三个命题如下:那么如果有
Th
(
G
)
=
{
φ
|
G
⊨
φ
}
{displaystyle {mbox{Th}}(G)={ varphi | GvDash varphi }}
,则
Th
(
G
)
{displaystyle {mbox{Th}}(G)}
是
G
{displaystyle G}
的定理。当然,如果
A
{displaystyle A}
和
B
{displaystyle B}
是两个命题集合且满足
A
⊆
B
{displaystyle Asubseteq B}
,那么
Th
(
A
)
⊆
Th
(
B
)
{displaystyle {mbox{Th}}(A)subseteq {mbox{Th}}(B)}
。我们说一个定理
T
{displaystyle T}
是完整的(Complete),当且仅当对于和
T
{displaystyle T}
一样构建在同样语言集合上的所有命题
φ
{displaystyle varphi }
,要么
φ
∈
T
{displaystyle varphi in T}
,要么
¬
φ
∈
T
{displaystyle lnot varphi in T}
。不是所有的定理是完整的。比如
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
一个空集合
{
Φ
}
{displaystyle {Phi }}
的定理是所有真命题集合,但是
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
不是完整的。假如有命题
Ψ
=
∃
x
∃
y
(
x
≠
y
)
{displaystyle Psi =exists xexists y(xneq y)}
,对于
Ψ
{displaystyle Psi }
来说,它既不是永真命题,也不是永假命题,它是一个可满足式的命题,也就是说
Th
(
Φ
)
⊭
Ψ
{displaystyle {mbox{Th}}(Phi )nvDash Psi }
且
Th
(
Φ
)
⊭
¬
Ψ
{displaystyle {mbox{Th}}(Phi )nvDash lnot Psi }
。因此
Ψ
∉
Th
(
Φ
)
{displaystyle Psi notin {mbox{Th}}(Phi )}
,所以我们说
Th
(
Φ
)
{displaystyle {mbox{Th}}(Phi )}
不是完整的。
一个定理
T
{displaystyle T}
称作是稳健的(Consistante),当且仅当
∀
φ
∈
T
,
¬
φ
∉
T
{displaystyle forall varphi in T, lnot varphi notin T}
。我们说对所有的解释(Interpretation)
I
{displaystyle I}
,
Th
(
I
)
{displaystyle {mbox{Th}}(I)}
是一个定理,并且
Th
(
I
)
{displaystyle {mbox{Th}}(I)}
既是稳健的又是完整的。
相关
- 牙医师人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学牙医学(法语:Dentisterie; 英语:Dentistr
- 诊断方法诊断,在医学意义上指对人体生理或精神疾病及其病理原因所作的判断。作出这种判断一般需要的的资料有:医生等专业人员根据症状、病史(包括家庭病史)、病历及医疗检查结果等。其概
- 氯胺酮氯胺酮(英语:Ketamine),俗称小姐、K仔、K粉、K他命、克他命、恺他命,在台湾,经常被称为裤子(相对于衣,衣代表的是Ecstasy 的第一个字母)、下面(相对于穿在上面的衣服),一种非鸦片系麻醉
- 泛昔洛韦泛昔洛韦(Famciclovir)是第二代开环核苷类抗病毒药,主要用于疱疹病毒感染,尤其是带状疱疹。泛昔洛韦为喷昔洛韦前药,在肠壁和肝脏经酶转化为喷昔洛韦。泛昔洛韦常用于带状疱疹治
- 胆管癌胆管癌(Cholangiocarcinoma),又称胆道癌,是一种由胆道上皮细胞(或呈现上皮细胞分化特征的细胞)癌变所造成的癌症。胆管癌主要的症状为肝功能异常、腹痛、黄疸、全身搔痒、发热和体
- H10N8甲型流行性感冒病毒H10N8亚型(英语:Influenza A virus subtype H10N8,记作A(H10N8)或H10N8)是一种甲型流感病毒,是禽流感病毒或禽流感病毒的一个亚型,由不同毒株经过基因重排产生
- 饮用饮用水是具有一定品质控管,可供饮用或使用而不会造成立即或长期性危害的水。在多数发达国家,即使只有极低比例的水实际使用于饮用或烹饪,常见用途包括洗涤和景观灌溉等,但其家庭
- 羊膜囊破裂羊膜囊破裂(Rupture of membranes,简称ROM)是指孕妇的羊膜囊破裂。此时会有少量羊水从阴道流出,因此也称为破水。一般羊膜囊破裂是发生在妊娠期满,可能在分娩开始或是分娩过程中,
- 乔治·桑塔亚那乔治·桑塔亚那(英语:George Santayana,1863年12月16日-1952年9月26日)。著名西班牙裔美国哲学家、散文家、诗人、小说家。他出身西班牙,后移居美国,年轻时曾在哈佛大学学习,获得了
- 氰化氢氰化氢,又称氢氰酸,化学式HCN。标准状态下为液体,剧毒且致命,无色而苦,并有淡淡的杏仁气味(杏桃的果核当中含有苦杏仁苷,溶于水会释放出氰化氢),能否嗅出视乎个人基因。氰化氢是一种