克拉莫-克若尼关系式

✍ dations ◷ 2025-11-09 13:52:01 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数 ω {displaystyle omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )} ,其中 χ 1 {displaystyle chi _{1}} 和 χ 2 {displaystyle chi _{2}} 是实值函数。假设此函数 χ ( ω ) {displaystyle chi (omega )} 在复数平面上半部可析,且当 | ω | {displaystyle |omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {displaystyle 1/|omega |} 快或与之相等,那么 χ ( ω ) {displaystyle chi (omega )} 满足以下关系:和其中 P {displaystyle {mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 和实数 ω {displaystyle omega } 函数 χ ( ω ′ ) ω ′ − ω {displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {displaystyle |omega |} 成正比,因此只要 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 消失比 1 / ω ′ {displaystyle {1}/{omega ^{prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数 i {displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {displaystyle chi (omega )} 分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t − t ′ ) {displaystyle chi (t-t^{prime })} 概括系统对在时间 t ′ {displaystyle t^{prime }} 的作用力 F ( t ′ ) {displaystyle F(t^{prime })} 在另一时间 t {displaystyle t} 的反应 P ( t ) {displaystyle P(t)} :因为系统不能在施力前有任何反应因此当 t ′ > t {displaystyle t^{prime }>t} , χ ( t − t ′ ) = 0 {displaystyle chi (t-t^{prime })=0} 。 可以证明这因果关系意味着 χ ( τ ) {displaystyle chi (tau )} 的傅立叶变换 χ ( ω ) {displaystyle chi (omega )} 在 ω {displaystyle omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {displaystyle omega } 很大时, χ ( ω ) {displaystyle chi (omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {displaystyle chi (omega )} 通常符合克喇末-克勒尼希关系式的前提条件。反应函数 χ ( ω ) {displaystyle chi (omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从 − ∞ {displaystyle -infty } 到 ∞ {displaystyle infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {displaystyle chi (omega )} 是实数变量 χ ( t − t ′ ) {displaystyle chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( − ω ) = χ ∗ ( ω ) {displaystyle chi (-omega )=chi ^{*}(omega )} , χ 1 ( ω ) {displaystyle chi _{1}(omega )} 是频率 ω {displaystyle omega } 的偶函数,而 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 是 ω {displaystyle omega } 的奇函数。根据该性质,积分可以从正负无穷区间约化为 [ 0 , ∞ ) {displaystyle [0,infty )} 的区间上。考虑实部 χ 1 ( ω ) {displaystyle chi _{1}(omega )} 的第一个关系,积分函数上下同乘 ω ′ + ω {displaystyle omega '+omega } 可得:由于 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 肺脏肺是很多进行空气呼吸的动物的呼吸系统中重要的一个器官,大部分四足类动物、一些鱼类和蜗牛都有肺。哺乳动物和其他身体结构较为复杂的动物则拥有两个肺,其位于胸腔中靠近脊柱
  • 多重器官衰竭症候群多重器官衰竭(英语:Multiple organ failure)或称多器官功能障碍综合征(英语:Multiple organ dysfunction syndrome、MODS)、多系统器官衰竭(英语:Multiple-system organ failure)、多
  • 麻痹麻痹(英语:Hypoesthesia)是多种病症的常见副作用。其主要表现是触觉或其他感官减弱,或失去感官刺激的敏感度。麻痹主要由神经损伤和血管阻塞引起,导致受血管阻塞影响的组织造成缺
  • 俄罗斯俄罗斯国家图书馆位于俄罗斯圣彼得堡涅瓦大街,紧邻奥斯特罗夫斯基广场。至今已经有218年的历史,是俄罗斯帝国最古老的公共图书馆。目前是俄罗斯第二大图书馆(仅次于位于莫斯科
  • 古人类旧石器时代按照时间可分作“最早期”(300万至70万年前)、“早期”(70万至10万年前)、“中期”(10万至3万5千年前)、“晚期”(3万5千至9千年前)四期。出土文物“最早期”的主要研究对
  • 利昂·莱德曼利昂·马克斯·莱德曼(英语:Leon Max Lederman,1922年7月15日-2018年10月3日),美国物理学家,1988年诺贝尔物理学奖获得者。生于纽约1946年进入哥伦比亚大学物理系读研究生,1951年获
  • 市政厅剧院市政厅剧院(法语:Théâtre du Capitole) 是位于法国城市图卢兹的图卢兹市政厅内的一个剧院。现在的剧院修建于1818年,在1917年曾遭遇火灾,但在1923年修复。剧院有1156个座位。
  • 新闻史中国新闻史,中国新闻业发展的历史。戈公振于1927年11月,由上海商务印书馆出版《中国报学史》(分六章,28.5万字),被认为是第一部系统研究中国报业发展史的专著。1930年代林语堂用英
  • 荷属安的列斯群岛荷属安的列斯(荷兰语:Nederlandse Antillen;帕皮阿门托语:Antias Hulandes)位于加勒比海之中,原称荷属西印度。曾是荷兰王国的构成国,由相距800多公里的南北两组岛屿组成。面积约80
  • 弗仑克尔缺陷弗伦克尔缺陷(英文 Frenkel defect 或 Frenkel disorder )是指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为间隙原子(或离子),并在其原先占据的格点处留下一个空