克拉莫-克若尼关系式

✍ dations ◷ 2025-10-21 01:29:48 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数 ω {displaystyle omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )} ,其中 χ 1 {displaystyle chi _{1}} 和 χ 2 {displaystyle chi _{2}} 是实值函数。假设此函数 χ ( ω ) {displaystyle chi (omega )} 在复数平面上半部可析,且当 | ω | {displaystyle |omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {displaystyle 1/|omega |} 快或与之相等,那么 χ ( ω ) {displaystyle chi (omega )} 满足以下关系:和其中 P {displaystyle {mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 和实数 ω {displaystyle omega } 函数 χ ( ω ′ ) ω ′ − ω {displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {displaystyle |omega |} 成正比,因此只要 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 消失比 1 / ω ′ {displaystyle {1}/{omega ^{prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数 i {displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {displaystyle chi (omega )} 分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t − t ′ ) {displaystyle chi (t-t^{prime })} 概括系统对在时间 t ′ {displaystyle t^{prime }} 的作用力 F ( t ′ ) {displaystyle F(t^{prime })} 在另一时间 t {displaystyle t} 的反应 P ( t ) {displaystyle P(t)} :因为系统不能在施力前有任何反应因此当 t ′ > t {displaystyle t^{prime }>t} , χ ( t − t ′ ) = 0 {displaystyle chi (t-t^{prime })=0} 。 可以证明这因果关系意味着 χ ( τ ) {displaystyle chi (tau )} 的傅立叶变换 χ ( ω ) {displaystyle chi (omega )} 在 ω {displaystyle omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {displaystyle omega } 很大时, χ ( ω ) {displaystyle chi (omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {displaystyle chi (omega )} 通常符合克喇末-克勒尼希关系式的前提条件。反应函数 χ ( ω ) {displaystyle chi (omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从 − ∞ {displaystyle -infty } 到 ∞ {displaystyle infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {displaystyle chi (omega )} 是实数变量 χ ( t − t ′ ) {displaystyle chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( − ω ) = χ ∗ ( ω ) {displaystyle chi (-omega )=chi ^{*}(omega )} , χ 1 ( ω ) {displaystyle chi _{1}(omega )} 是频率 ω {displaystyle omega } 的偶函数,而 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 是 ω {displaystyle omega } 的奇函数。根据该性质,积分可以从正负无穷区间约化为 [ 0 , ∞ ) {displaystyle [0,infty )} 的区间上。考虑实部 χ 1 ( ω ) {displaystyle chi _{1}(omega )} 的第一个关系,积分函数上下同乘 ω ′ + ω {displaystyle omega '+omega } 可得:由于 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 蛋白质A蛋白质A(英语:Protein A)为金黄色葡萄球菌表面上发现的一种表面蛋白,大小约为42 kDa。该蛋白由 spa 基因转译而成,并由DNA的拓朴结构、包内渗透压,以及一个名为ArlS-ArlR的双单元
  • 糊精糊精(dextrin、pyrodextrin)是淀粉的不完全水解产物,有固定的分子通式,但是碳链长短不一定相同。一般工业上是由马铃薯淀粉的酸水解制得。 糊精在肠道内有利于嗜酸杆菌生长,能减
  • 油红O油红O,或称油剂红27,苏丹红5B(C26H24N4O)是一种重氮脂肪染色剂,用于染中性的脂质冰冻切片和一些脂蛋白的石蜡切片。正常情况下为红色粉末状。油红O是苏丹染剂之一,很大程度上可以
  • 小孢癣菌小孢癣菌属(学名:Microsporum)是子囊菌门下的一属,与毛癣菌属、表皮癣菌属同为皮肤真菌(英语:Dermatophyte),在皮肤及毛发造成皮肤感染。小孢癣菌可产生大分生孢子(Macroconidia)及小
  • 吕宋人吕宋人(学名:Homo luzonensis)是一种已灭绝的早期人类,因于2007年在吕宋岛发现该物种一个个体的第三跖骨化石而得名。2019年,《自然》期刊公布了佛罗伦特·底特律等人对吕宋人化
  • 奥依语奥依语(langue d'oïl),是罗曼语族的一支,源自现在法国卢瓦尔河以北、一部分比利时和海峡群岛的地区。奥依语通常是指整个奥依语支的语言,而奥依语中使用最多的变体是法语。但是
  • 乌克兰国家航天局乌克兰国家航天局 (乌克兰语:Державне космічне агентство України,英语:State Space Agency of Ukraine, 简称SSAU)是乌克兰的国家航天机构,负
  • 勃艮地公国勃艮第公国(法语:Duché de Bourgogne;拉丁语:Ducatus Burgundiae;荷兰语:Hertogdom Bourgondië)是一个曾存在于918年-1482年间的欧洲国家,领土曾囊括今法国东部勃艮第-弗朗什-孔泰
  • 第二次英荷战争第二次英荷战争(荷兰语:Tweede Engels-Nederlandse Oorlog;英语:Second Anglo-Dutch War,1665年-1667年)是四次英荷战争中的第二次,是英格兰王国以及荷兰共和国爆发的海战,战争的起因
  • 不当对立不当对立或无端对立(unwarranted contrast)是一种形式谬误,无来由地推定对立事物存在。形式逻辑上,是将特称肯定型(I型)或特称否定型(O型)之直言命题做形式互换。形式:范例:可能所有的