首页 >
克拉莫-克若尼关系式
✍ dations ◷ 2025-04-25 10:01:17 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数
ω
{displaystyle omega }
的复值函数
χ
(
ω
)
=
χ
1
(
ω
)
+
i
χ
2
(
ω
)
{displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )}
,其中
χ
1
{displaystyle chi _{1}}
和
χ
2
{displaystyle chi _{2}}
是实值函数。假设此函数
χ
(
ω
)
{displaystyle chi (omega )}
在复数平面上半部可析,且当
|
ω
|
{displaystyle |omega |}
趋向无限大时,它在上半平面趋于零的速度比
1
/
|
ω
|
{displaystyle 1/|omega |}
快或与之相等,那么
χ
(
ω
)
{displaystyle chi (omega )}
满足以下关系:和其中
P
{displaystyle {mathcal {P}}}
表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
和实数
ω
{displaystyle omega }
函数
χ
(
ω
′
)
ω
′
−
ω
{displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}}
在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和
|
ω
|
{displaystyle |omega |}
成正比,因此只要
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
消失比
1
/
ω
′
{displaystyle {1}/{omega ^{prime }}}
快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数
i
{displaystyle i}
意味者这是连系实部和虚部的公式。把
χ
(
ω
)
{displaystyle chi (omega )}
分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数
χ
(
t
−
t
′
)
{displaystyle chi (t-t^{prime })}
概括系统对在时间
t
′
{displaystyle t^{prime }}
的作用力
F
(
t
′
)
{displaystyle F(t^{prime })}
在另一时间
t
{displaystyle t}
的反应
P
(
t
)
{displaystyle P(t)}
:因为系统不能在施力前有任何反应因此当
t
′
>
t
{displaystyle t^{prime }>t}
,
χ
(
t
−
t
′
)
=
0
{displaystyle chi (t-t^{prime })=0}
。
可以证明这因果关系意味着
χ
(
τ
)
{displaystyle chi (tau )}
的傅立叶变换
χ
(
ω
)
{displaystyle chi (omega )}
在
ω
{displaystyle omega }
复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此
ω
{displaystyle omega }
很大时,
χ
(
ω
)
{displaystyle chi (omega )}
会趋近于0。从这些物理考量,可知物理反应函数
χ
(
ω
)
{displaystyle chi (omega )}
通常符合克喇末-克勒尼希关系式的前提条件。反应函数
χ
(
ω
)
{displaystyle chi (omega )}
的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从
−
∞
{displaystyle -infty }
到
∞
{displaystyle infty }
,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为
χ
(
ω
)
{displaystyle chi (omega )}
是实数变量
χ
(
t
−
t
′
)
{displaystyle chi (t-t')}
的傅里叶变换,根据对实数进行傅里叶变换的性质,
χ
(
−
ω
)
=
χ
∗
(
ω
)
{displaystyle chi (-omega )=chi ^{*}(omega )}
,
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
是频率
ω
{displaystyle omega }
的偶函数,而
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
是
ω
{displaystyle omega }
的奇函数。根据该性质,积分可以从正负无穷区间约化为
[
0
,
∞
)
{displaystyle [0,infty )}
的区间上。考虑实部
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
的第一个关系,积分函数上下同乘
ω
′
+
ω
{displaystyle omega '+omega }
可得:由于
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。
相关
- 爱德华·比希纳爱德华·比希纳(德语:Eduard Buchner,1860年5月20日-1917年8月13日),德国化学家,1907年获诺贝尔化学奖。布赫纳1860年生于慕尼黑的一个医生家庭之中,1884年于慕尼黑大学追随阿道夫·
- 犹太教灯台犹太教灯台(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
- 教授教授,是一种高等教育体系中的职称。在中国汉、唐的大学中即设有此官职;在现代汉语、日语、及韩语的语境中,多作为英语“Professor”一词的同义语使用,指在现代高等教育机构(例如
- β-酮硫解酶缺乏症β-酮硫解酶缺乏症是一种罕见的常染色体隐性代谢疾病,全世界仅报告有50至60例。患者机体无法正确处理异亮氨酸或脂质分解产物,典型发作年龄为6个月至24个月。该病症由ACAT1基
- 东海大学东海大学可以指:
- 肌肉僵直张力亢进(英语:Hypertonia、肌肉压力过高、肌肉张力亢进、肌肉僵直),在文献中、有时等同于反射亢进(Spasticity/hyperreflexia),指的是中枢神经系统周围损伤所引起的亢进、亦即
- 菲尼斯泰尔省菲尼斯泰尔省(法语:Finistère、布列塔尼语:Penn-ar-bed)是法国布列塔尼的一个省。省名是拉丁语“大地尽头”的意思,取义于该省位于法国欧洲大陆部分的最西部。这个省和莫尔比昂
- 司法公正公正指对于同一事件对于所有的人平等对待。公正包括程序公正和社会公正。程序公正追求规则对于所有人和机构的平等,追求起点的平等。社会公正追求结果的平等,不问人们的起点、
- 广义相对论中的数学入门广义相对论所使用的数学很复杂。牛顿的运动理论中,物体做加速度运动时,其长度和时间流逝的速率保持定值,这表示牛顿力学中的许多问题用代数就能解决。然而,相对论中的物体在运动
- 白川英树白川英树(日语:白川 英樹/しらかわ ひでき Shirakawa Hideki ?,1936年8月20日-),日本化学家,筑波大学名誉教授。日本学士院会员。文化勋章表彰。文化功劳者。白川教授因有关导电聚