首页 >
克拉莫-克若尼关系式
✍ dations ◷ 2025-09-03 08:40:49 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数
ω
{displaystyle omega }
的复值函数
χ
(
ω
)
=
χ
1
(
ω
)
+
i
χ
2
(
ω
)
{displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )}
,其中
χ
1
{displaystyle chi _{1}}
和
χ
2
{displaystyle chi _{2}}
是实值函数。假设此函数
χ
(
ω
)
{displaystyle chi (omega )}
在复数平面上半部可析,且当
|
ω
|
{displaystyle |omega |}
趋向无限大时,它在上半平面趋于零的速度比
1
/
|
ω
|
{displaystyle 1/|omega |}
快或与之相等,那么
χ
(
ω
)
{displaystyle chi (omega )}
满足以下关系:和其中
P
{displaystyle {mathcal {P}}}
表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
和实数
ω
{displaystyle omega }
函数
χ
(
ω
′
)
ω
′
−
ω
{displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}}
在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和
|
ω
|
{displaystyle |omega |}
成正比,因此只要
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
消失比
1
/
ω
′
{displaystyle {1}/{omega ^{prime }}}
快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数
i
{displaystyle i}
意味者这是连系实部和虚部的公式。把
χ
(
ω
)
{displaystyle chi (omega )}
分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数
χ
(
t
−
t
′
)
{displaystyle chi (t-t^{prime })}
概括系统对在时间
t
′
{displaystyle t^{prime }}
的作用力
F
(
t
′
)
{displaystyle F(t^{prime })}
在另一时间
t
{displaystyle t}
的反应
P
(
t
)
{displaystyle P(t)}
:因为系统不能在施力前有任何反应因此当
t
′
>
t
{displaystyle t^{prime }>t}
,
χ
(
t
−
t
′
)
=
0
{displaystyle chi (t-t^{prime })=0}
。
可以证明这因果关系意味着
χ
(
τ
)
{displaystyle chi (tau )}
的傅立叶变换
χ
(
ω
)
{displaystyle chi (omega )}
在
ω
{displaystyle omega }
复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此
ω
{displaystyle omega }
很大时,
χ
(
ω
)
{displaystyle chi (omega )}
会趋近于0。从这些物理考量,可知物理反应函数
χ
(
ω
)
{displaystyle chi (omega )}
通常符合克喇末-克勒尼希关系式的前提条件。反应函数
χ
(
ω
)
{displaystyle chi (omega )}
的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从
−
∞
{displaystyle -infty }
到
∞
{displaystyle infty }
,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为
χ
(
ω
)
{displaystyle chi (omega )}
是实数变量
χ
(
t
−
t
′
)
{displaystyle chi (t-t')}
的傅里叶变换,根据对实数进行傅里叶变换的性质,
χ
(
−
ω
)
=
χ
∗
(
ω
)
{displaystyle chi (-omega )=chi ^{*}(omega )}
,
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
是频率
ω
{displaystyle omega }
的偶函数,而
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
是
ω
{displaystyle omega }
的奇函数。根据该性质,积分可以从正负无穷区间约化为
[
0
,
∞
)
{displaystyle [0,infty )}
的区间上。考虑实部
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
的第一个关系,积分函数上下同乘
ω
′
+
ω
{displaystyle omega '+omega }
可得:由于
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。
相关
- 行为经济学行为经济学(英语:Behavioral economics),经济学的一个分支,承袭经验主义,并受到心理学与认知科学的影响,探讨社会、认知与情感的因素,与个人及团体形成经济决策的背后原因,并从而了解
- 乌拉圭乌拉圭东岸共和国(西班牙语:República Oriental del Uruguay),通称乌拉圭(Uruguay,西班牙语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertin
- 惯用音陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧ 小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧ 书法 ‧ 飞白书笔画 ‧
- 后戏后戏(日语:後戯〔こうぎ〕,或アフタ-ラブ)是指人类性行为在交媾过后的身体亲密或为高潮后的温存。在性反应周期之中,男女呈现的反应期可能不完全一致(一方处在高潮期,另一方可能在高
- 加速器加速器可能指:
- 复旦大学上海医学院复旦大学上海医学院,简称上海医学院、上医,具有悠久的历史和优良的传统,建校以来一直是中国大陆第一流的医学院校。上海医学院的前身是国立中央大学医学院,成立于1927年(时称“国
- 恩斯特·克拉德尼恩斯特·弗洛伦斯·弗里德里希·克拉德尼(德语:Ernst Florens Friedrich Chladni,1756年11月30日-1827年4月3日),德国物理学家、音乐家。主要贡献包括振动板研究、不同气体中音速
- 降雨量降水量是一定时间内,降落到水平面上,假如无渗漏,不流失,也不蒸发,累积起来的水的深度,是衡量一个地区降水多少的数据。其单位是毫米,符号是mm。常用年降水量来描述该地气候,是除气候
- 卡米尔·圣桑夏尔·卡米尔·圣桑(法语:Charles Camille Saint-Saëns,1835年10月9日-1921年12月16日)法国作曲家,键盘乐器演奏家。他的作品对法国乐坛及后世带来深远的影响,重要的作品有《动物
- 分子筛分子筛是一种包含有精确和单一的微小孔洞的材料,可用于吸附气体或液体。足够小的分子可以通过孔道被吸附,而更大的分子则不能。与一个普通筛子不同的是它在分子水平上进行操作