克拉莫-克若尼关系式

✍ dations ◷ 2025-09-17 19:43:36 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数 ω {displaystyle omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )} ,其中 χ 1 {displaystyle chi _{1}} 和 χ 2 {displaystyle chi _{2}} 是实值函数。假设此函数 χ ( ω ) {displaystyle chi (omega )} 在复数平面上半部可析,且当 | ω | {displaystyle |omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {displaystyle 1/|omega |} 快或与之相等,那么 χ ( ω ) {displaystyle chi (omega )} 满足以下关系:和其中 P {displaystyle {mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 和实数 ω {displaystyle omega } 函数 χ ( ω ′ ) ω ′ − ω {displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {displaystyle |omega |} 成正比,因此只要 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 消失比 1 / ω ′ {displaystyle {1}/{omega ^{prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数 i {displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {displaystyle chi (omega )} 分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t − t ′ ) {displaystyle chi (t-t^{prime })} 概括系统对在时间 t ′ {displaystyle t^{prime }} 的作用力 F ( t ′ ) {displaystyle F(t^{prime })} 在另一时间 t {displaystyle t} 的反应 P ( t ) {displaystyle P(t)} :因为系统不能在施力前有任何反应因此当 t ′ > t {displaystyle t^{prime }>t} , χ ( t − t ′ ) = 0 {displaystyle chi (t-t^{prime })=0} 。 可以证明这因果关系意味着 χ ( τ ) {displaystyle chi (tau )} 的傅立叶变换 χ ( ω ) {displaystyle chi (omega )} 在 ω {displaystyle omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {displaystyle omega } 很大时, χ ( ω ) {displaystyle chi (omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {displaystyle chi (omega )} 通常符合克喇末-克勒尼希关系式的前提条件。反应函数 χ ( ω ) {displaystyle chi (omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从 − ∞ {displaystyle -infty } 到 ∞ {displaystyle infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {displaystyle chi (omega )} 是实数变量 χ ( t − t ′ ) {displaystyle chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( − ω ) = χ ∗ ( ω ) {displaystyle chi (-omega )=chi ^{*}(omega )} , χ 1 ( ω ) {displaystyle chi _{1}(omega )} 是频率 ω {displaystyle omega } 的偶函数,而 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 是 ω {displaystyle omega } 的奇函数。根据该性质,积分可以从正负无穷区间约化为 [ 0 , ∞ ) {displaystyle [0,infty )} 的区间上。考虑实部 χ 1 ( ω ) {displaystyle chi _{1}(omega )} 的第一个关系,积分函数上下同乘 ω ′ + ω {displaystyle omega '+omega } 可得:由于 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 超广谱β-内酰胺类抗生素(Beta-lactam antibiotic)是一种种类很广的抗生素,其中包括青霉素及其衍生物、头孢菌素、单酰胺环类(英语:monobactam)、碳青霉烯和青霉烯类酶抑制剂等。基本上
  • 胰岛素抵抗胰岛素抵抗(英语:insulin resistance),是指脂肪细胞、肌肉细胞和肝细胞对正常浓度的胰岛素产生反应不足的现象,亦即这些细胞需要更高的胰岛素浓度才能对胰岛素产生反应。在脂肪细
  • 胰岛素样生长因子类胰岛素生长因子(insulin-like growth factors,简称IGFs)为一种与胰岛素序列高度相似的蛋白质激素。可以调控生理环境的复杂系(英语:complex system),该系统由两种细胞表面受体(IGF
  • 肘后备急方《肘后方》,原名《肘后救卒方》,东晋葛洪编著,又称《肘后备急方》,共八卷70篇,为中医方剂学名著。这是葛洪将他在广东时编著的一本方剂书《金匮药方》(一作《玉函方》),其中撷取出的
  • 曼托瓦曼托瓦(意大利语:Màntova),是意大利伦巴第大区曼托瓦省省会。公元前70年,古罗马诗人维吉尔出生于曼托瓦附近。1341年,曼托瓦城邦向巴伐利亚公国宫廷派遣大使,被认为是现代意义上的
  • 夏尔·佩罗夏尔·佩罗(Charles Perrault,1628年1月12日-1703年5月16日)是十七世纪法国诗人、作家,以其作品《鹅妈妈的故事》而闻名。出生于一个富裕家庭,是家中七个孩子中最小的。
  • 羽扇豆羽扇豆属(学名:Lupinus)又称鲁冰花,是豆科中的一个属,主要分布于北美洲西部、南美洲、地中海地区以及非洲。这类植物大多为多年生草本植物,高约0.3到1.5米;另外也有少数为一年生植
  • 马克·吕特马克·吕特(荷兰语:Mark Rutte,荷兰语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","
  • 乡间别墅契克斯(Chequers),又名契克斯阁(Chequers Court),是一所位于英格兰白金汉郡艾尔斯伯里(Aylesbury)东南方,埃尔斯加堡(Ellesborough)附近,奇尔特恩丘陵(Chiltern Hills)山脚的庄园宅第(count
  • Bsub2/subO一氧化二硼(化学式:B2O)是由硼和氧形成的一种化合物。两篇实验研究已经分别指出了具有钻石结构和石墨结构的B2O的存在,这正如氮化硼和碳固体的两种存在形式。然而,随后的一个对硼