首页 >
克拉莫-克若尼关系式
✍ dations ◷ 2025-04-04 06:02:24 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数
ω
{displaystyle omega }
的复值函数
χ
(
ω
)
=
χ
1
(
ω
)
+
i
χ
2
(
ω
)
{displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )}
,其中
χ
1
{displaystyle chi _{1}}
和
χ
2
{displaystyle chi _{2}}
是实值函数。假设此函数
χ
(
ω
)
{displaystyle chi (omega )}
在复数平面上半部可析,且当
|
ω
|
{displaystyle |omega |}
趋向无限大时,它在上半平面趋于零的速度比
1
/
|
ω
|
{displaystyle 1/|omega |}
快或与之相等,那么
χ
(
ω
)
{displaystyle chi (omega )}
满足以下关系:和其中
P
{displaystyle {mathcal {P}}}
表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
和实数
ω
{displaystyle omega }
函数
χ
(
ω
′
)
ω
′
−
ω
{displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}}
在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和
|
ω
|
{displaystyle |omega |}
成正比,因此只要
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
消失比
1
/
ω
′
{displaystyle {1}/{omega ^{prime }}}
快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数
i
{displaystyle i}
意味者这是连系实部和虚部的公式。把
χ
(
ω
)
{displaystyle chi (omega )}
分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数
χ
(
t
−
t
′
)
{displaystyle chi (t-t^{prime })}
概括系统对在时间
t
′
{displaystyle t^{prime }}
的作用力
F
(
t
′
)
{displaystyle F(t^{prime })}
在另一时间
t
{displaystyle t}
的反应
P
(
t
)
{displaystyle P(t)}
:因为系统不能在施力前有任何反应因此当
t
′
>
t
{displaystyle t^{prime }>t}
,
χ
(
t
−
t
′
)
=
0
{displaystyle chi (t-t^{prime })=0}
。
可以证明这因果关系意味着
χ
(
τ
)
{displaystyle chi (tau )}
的傅立叶变换
χ
(
ω
)
{displaystyle chi (omega )}
在
ω
{displaystyle omega }
复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此
ω
{displaystyle omega }
很大时,
χ
(
ω
)
{displaystyle chi (omega )}
会趋近于0。从这些物理考量,可知物理反应函数
χ
(
ω
)
{displaystyle chi (omega )}
通常符合克喇末-克勒尼希关系式的前提条件。反应函数
χ
(
ω
)
{displaystyle chi (omega )}
的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从
−
∞
{displaystyle -infty }
到
∞
{displaystyle infty }
,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为
χ
(
ω
)
{displaystyle chi (omega )}
是实数变量
χ
(
t
−
t
′
)
{displaystyle chi (t-t')}
的傅里叶变换,根据对实数进行傅里叶变换的性质,
χ
(
−
ω
)
=
χ
∗
(
ω
)
{displaystyle chi (-omega )=chi ^{*}(omega )}
,
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
是频率
ω
{displaystyle omega }
的偶函数,而
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
是
ω
{displaystyle omega }
的奇函数。根据该性质,积分可以从正负无穷区间约化为
[
0
,
∞
)
{displaystyle [0,infty )}
的区间上。考虑实部
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
的第一个关系,积分函数上下同乘
ω
′
+
ω
{displaystyle omega '+omega }
可得:由于
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。
相关
- 冲田总司冲田 总司(1842年7月8日-1868年7月19日),本名藤原春政,幼名宗次郎,后改为藤原房良、冲田总司,生于江户(今日本东京都)白河藩宅,是江户时代后期的新选组队士、局长助勤、一番队组长、剑
- 鲑鱼鲑鱼(英语:salmon),其中大西洋鲑又音译为三文鱼,是数种鲑科鱼的通称。它们大部分为洄游性辐鳍鱼,是常见的可食用鱼类之一。共有300多个属种的鲑科鱼类生活在大西洋及太平洋,在非原
- 脑外科人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学神经外科,也常称作脑外科,是外科的一个
- 帕金森氏病帕金森病(Parkinson's disease,简称PD)是一种影响中枢神经系统的慢性神经退化疾病,主要影响运动神经系统。它的症状通常随时间缓慢出现,早期最明显的症状为颤抖、肢体僵硬、运动
- 超音波检查医学超声检查(超声检查、超声诊断学)(英语:Medical ultrasound)是一种基于超声的医学影像诊断技术,使肌肉和内脏器官等软组织可视化,包括其尺寸、结构和病理学病灶。产科超声检查广
- 中世纪伊斯兰世界的科学中世纪伊斯兰世界的科学即时通常所谓的伊斯兰科学、阿拉伯科学,是指中世纪的伊斯兰黄金时代(约750年至1258年)时伊斯兰世界发展出来的科学。在这段时期内印度、伊朗,特别是希腊
- Y染色体Y染色体是属于XY性别决定系统的大多数哺乳动物(包括人类)的两条性染色体之一。在哺乳动物的Y染色体中含有的SRY基因能触发睾丸的生长,并由此决定雄性性状。人类的Y染色体中包含
- 色色部,为汉字索引中的部首之一,康熙字典214个部首中的第一百三十九个(六划的则为第二十二个)。就繁体和简体中文中,色部归于六划部首。色部只以右方为部字。且无其他部首可用者将
- 珊德拉·法贝尔珊德拉·摩尔·法贝尔(英语:Sandra Moore Faber,1944年12月29日-),美国女性天文学家,现任职于圣塔克鲁兹加利福尼亚大学和利克天文台。法贝尔于1966年在斯沃斯莫尔学院获得物理学士
- 法布里丘斯约翰·克里斯蒂安·法布里丘斯(丹麦语:Johann Christian Fabricius,1745年1月7日-1808年3月3日)是一位丹麦昆虫学家,因通过昆虫的口器进行昆虫分类的研究而知名。出生于丹麦南部城