克拉莫-克若尼关系式

✍ dations ◷ 2025-04-25 10:01:17 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数 ω {displaystyle omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )} ,其中 χ 1 {displaystyle chi _{1}} 和 χ 2 {displaystyle chi _{2}} 是实值函数。假设此函数 χ ( ω ) {displaystyle chi (omega )} 在复数平面上半部可析,且当 | ω | {displaystyle |omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {displaystyle 1/|omega |} 快或与之相等,那么 χ ( ω ) {displaystyle chi (omega )} 满足以下关系:和其中 P {displaystyle {mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 和实数 ω {displaystyle omega } 函数 χ ( ω ′ ) ω ′ − ω {displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {displaystyle |omega |} 成正比,因此只要 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 消失比 1 / ω ′ {displaystyle {1}/{omega ^{prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数 i {displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {displaystyle chi (omega )} 分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t − t ′ ) {displaystyle chi (t-t^{prime })} 概括系统对在时间 t ′ {displaystyle t^{prime }} 的作用力 F ( t ′ ) {displaystyle F(t^{prime })} 在另一时间 t {displaystyle t} 的反应 P ( t ) {displaystyle P(t)} :因为系统不能在施力前有任何反应因此当 t ′ > t {displaystyle t^{prime }>t} , χ ( t − t ′ ) = 0 {displaystyle chi (t-t^{prime })=0} 。 可以证明这因果关系意味着 χ ( τ ) {displaystyle chi (tau )} 的傅立叶变换 χ ( ω ) {displaystyle chi (omega )} 在 ω {displaystyle omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {displaystyle omega } 很大时, χ ( ω ) {displaystyle chi (omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {displaystyle chi (omega )} 通常符合克喇末-克勒尼希关系式的前提条件。反应函数 χ ( ω ) {displaystyle chi (omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从 − ∞ {displaystyle -infty } 到 ∞ {displaystyle infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {displaystyle chi (omega )} 是实数变量 χ ( t − t ′ ) {displaystyle chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( − ω ) = χ ∗ ( ω ) {displaystyle chi (-omega )=chi ^{*}(omega )} , χ 1 ( ω ) {displaystyle chi _{1}(omega )} 是频率 ω {displaystyle omega } 的偶函数,而 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 是 ω {displaystyle omega } 的奇函数。根据该性质,积分可以从正负无穷区间约化为 [ 0 , ∞ ) {displaystyle [0,infty )} 的区间上。考虑实部 χ 1 ( ω ) {displaystyle chi _{1}(omega )} 的第一个关系,积分函数上下同乘 ω ′ + ω {displaystyle omega '+omega } 可得:由于 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 爱德华·比希纳爱德华·比希纳(德语:Eduard Buchner,1860年5月20日-1917年8月13日),德国化学家,1907年获诺贝尔化学奖。布赫纳1860年生于慕尼黑的一个医生家庭之中,1884年于慕尼黑大学追随阿道夫·
  • 犹太教灯台犹太教灯台(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taam
  • 教授教授,是一种高等教育体系中的职称。在中国汉、唐的大学中即设有此官职;在现代汉语、日语、及韩语的语境中,多作为英语“Professor”一词的同义语使用,指在现代高等教育机构(例如
  • β-酮硫解酶缺乏症β-酮硫解酶缺乏症是一种罕见的常染色体隐性代谢疾病,全世界仅报告有50至60例。患者机体无法正确处理异亮氨酸或脂质分解产物,典型发作年龄为6个月至24个月。该病症由ACAT1基
  • 东海大学东海大学可以指:
  • 肌肉僵直张力亢进(英语:Hypertonia、肌肉压力过高、肌肉张力亢进、肌肉僵直),在文献中、有时等同于反射亢进(Spasticity/hyperreflexia),指的是中枢神经系统周围损伤所引起的亢进、亦即
  • 菲尼斯泰尔省菲尼斯泰尔省(法语:Finistère、布列塔尼语:Penn-ar-bed)是法国布列塔尼的一个省。省名是拉丁语“大地尽头”的意思,取义于该省位于法国欧洲大陆部分的最西部。这个省和莫尔比昂
  • 司法公正公正指对于同一事件对于所有的人平等对待。公正包括程序公正和社会公正。程序公正追求规则对于所有人和机构的平等,追求起点的平等。社会公正追求结果的平等,不问人们的起点、
  • 广义相对论中的数学入门广义相对论所使用的数学很复杂。牛顿的运动理论中,物体做加速度运动时,其长度和时间流逝的速率保持定值,这表示牛顿力学中的许多问题用代数就能解决。然而,相对论中的物体在运动
  • 白川英树白川英树(日语:白川 英樹/しらかわ ひでき Shirakawa Hideki ?,1936年8月20日-),日本化学家,筑波大学名誉教授。日本学士院会员。文化勋章表彰。文化功劳者。白川教授因有关导电聚