首页 >
克拉莫-克若尼关系式
✍ dations ◷ 2024-12-22 23:33:19 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数
ω
{displaystyle omega }
的复值函数
χ
(
ω
)
=
χ
1
(
ω
)
+
i
χ
2
(
ω
)
{displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )}
,其中
χ
1
{displaystyle chi _{1}}
和
χ
2
{displaystyle chi _{2}}
是实值函数。假设此函数
χ
(
ω
)
{displaystyle chi (omega )}
在复数平面上半部可析,且当
|
ω
|
{displaystyle |omega |}
趋向无限大时,它在上半平面趋于零的速度比
1
/
|
ω
|
{displaystyle 1/|omega |}
快或与之相等,那么
χ
(
ω
)
{displaystyle chi (omega )}
满足以下关系:和其中
P
{displaystyle {mathcal {P}}}
表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
和实数
ω
{displaystyle omega }
函数
χ
(
ω
′
)
ω
′
−
ω
{displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}}
在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和
|
ω
|
{displaystyle |omega |}
成正比,因此只要
χ
(
ω
′
)
{displaystyle chi (omega ^{prime })}
消失比
1
/
ω
′
{displaystyle {1}/{omega ^{prime }}}
快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数
i
{displaystyle i}
意味者这是连系实部和虚部的公式。把
χ
(
ω
)
{displaystyle chi (omega )}
分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数
χ
(
t
−
t
′
)
{displaystyle chi (t-t^{prime })}
概括系统对在时间
t
′
{displaystyle t^{prime }}
的作用力
F
(
t
′
)
{displaystyle F(t^{prime })}
在另一时间
t
{displaystyle t}
的反应
P
(
t
)
{displaystyle P(t)}
:因为系统不能在施力前有任何反应因此当
t
′
>
t
{displaystyle t^{prime }>t}
,
χ
(
t
−
t
′
)
=
0
{displaystyle chi (t-t^{prime })=0}
。
可以证明这因果关系意味着
χ
(
τ
)
{displaystyle chi (tau )}
的傅立叶变换
χ
(
ω
)
{displaystyle chi (omega )}
在
ω
{displaystyle omega }
复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此
ω
{displaystyle omega }
很大时,
χ
(
ω
)
{displaystyle chi (omega )}
会趋近于0。从这些物理考量,可知物理反应函数
χ
(
ω
)
{displaystyle chi (omega )}
通常符合克喇末-克勒尼希关系式的前提条件。反应函数
χ
(
ω
)
{displaystyle chi (omega )}
的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从
−
∞
{displaystyle -infty }
到
∞
{displaystyle infty }
,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为
χ
(
ω
)
{displaystyle chi (omega )}
是实数变量
χ
(
t
−
t
′
)
{displaystyle chi (t-t')}
的傅里叶变换,根据对实数进行傅里叶变换的性质,
χ
(
−
ω
)
=
χ
∗
(
ω
)
{displaystyle chi (-omega )=chi ^{*}(omega )}
,
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
是频率
ω
{displaystyle omega }
的偶函数,而
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
是
ω
{displaystyle omega }
的奇函数。根据该性质,积分可以从正负无穷区间约化为
[
0
,
∞
)
{displaystyle [0,infty )}
的区间上。考虑实部
χ
1
(
ω
)
{displaystyle chi _{1}(omega )}
的第一个关系,积分函数上下同乘
ω
′
+
ω
{displaystyle omega '+omega }
可得:由于
χ
2
(
ω
)
{displaystyle chi _{2}(omega )}
为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。
相关
- 超声心动图超声心动图,是一种心脏超声波检查,它使用标准的超声波技术显示心脏的二维图片。现在最新的超声诊断系统采用三维及时成像。耗时大约15-20分钟,甚至更长。除了产生心血管系统的
- 小腿腿(英语:Leg),通常指人体的下肢,功能之一在于行走。广义来说,是指其到支撑作用的结构,对于动物来说,通常呈近似圆柱状。由于需要分散重力,通常腿部的末端会形成较宽大的结构,例如人类
- 鼻中隔软骨鼻中隔软骨(英语:septal nasal cartilage)是由透明软骨(英语:hyaline cartilage)所组成。某些地方看起来像四边形,其边缘比中间还要厚实。鼻中隔软骨把前面鼻腔的中间部分给分成左
- primer引物(英文:primer),又译引子,是一小段单链DNA或RNA,作为DNA复制的起始点,存在于自然中生物的DNA复制(RNA引物)和聚合酶链式反应(PCR)中人工合成的引物(通常为DNA引物)。之所以需要引物是
- bspan style=color:black;⑰/span/b马尔马拉海(土耳其语:Marmara Denizi,希腊语:Θάλασσα του Μαρμαρά),又译马摩拉海,古希腊与古罗马时期则称为普罗庞提斯海,是亚洲小亚细亚半岛同欧洲巴尔干半岛之间
- 礼炮号空间站礼炮计划(俄语:Салют)是由前苏联计划的首个空间站计划,其中包括了于1971年至1986年这15年间发射的一系列九个的单模块(single-module)空间站。该计划包括一系列六个科研站和
- 赤道隆起赤道隆起(英语:Equatorial bulge)是指行星在赤道和在两极上测得的直径差,由行星在自转时产生的离心力造成,使星球形成一个扁球体而不是球体。
- 斯韦德贝里特奥多尔·斯韦德贝里(瑞典语:Theodor Svedberg,1884年8月30日-1971年2月25日),瑞典化学家,1926年获诺贝尔化学奖。斯韦德贝里1884年8月30日出生于瑞典耶夫勒堡省瓦尔布的弗莱伦,是
- 潜热潜热,在热化学中,是物质在物态变化(相变)过程中,在温度没有变化的情况下,吸收或释放的能量。英文 latent (heat) 这个术语最初是由约瑟夫·布雷克发明,约于1750年从拉丁文的“later
- 伊藤正男伊藤正男(日语:伊藤 正男/いとう まさお Itō Masao,1928年12月4日-2018年12月18日),日本神经科学家,理化学研究所脑科学研究所主任。他曾获得2006年格鲁伯神经科学奖和1996年日本