克拉莫-克若尼关系式

✍ dations ◷ 2025-07-22 13:24:52 #克拉莫-克若尼关系式
克喇末-克勒尼希关系式(英语:Kramers–Kronig relations)是数学上连系复面上半可析函数实数部和虚数部的公式。此关系式常用于物理系统的线性反应函数。物理上因果关系(系统反应必须在施力之后)意味着反应函数必须符合复面上半的可析性。反之,反应函数的可析性意味着相应物理系统的因果性。此关系式以拉尔夫·克勒尼希和汉斯·克喇末为名。给定一复数变数 ω {displaystyle omega } 的复值函数 χ ( ω ) = χ 1 ( ω ) + i χ 2 ( ω ) {displaystyle {chi (omega )}=chi _{1}(omega )+ichi _{2}(omega )} ,其中 χ 1 {displaystyle chi _{1}} 和 χ 2 {displaystyle chi _{2}} 是实值函数。假设此函数 χ ( ω ) {displaystyle chi (omega )} 在复数平面上半部可析,且当 | ω | {displaystyle |omega |} 趋向无限大时,它在上半平面趋于零的速度比 1 / | ω | {displaystyle 1/|omega |} 快或与之相等,那么 χ ( ω ) {displaystyle chi (omega )} 满足以下关系:和其中 P {displaystyle {mathcal {P}}} 表示柯西主值。因此可析函数的实部和虚部并不独立:函数的一部分可以重建整个函数。推导克喇末-克勒尼希关系式是留数定理的基本应用。对任何复面上半可析函数 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 和实数 ω {displaystyle omega } 函数 χ ( ω ′ ) ω ′ − ω {displaystyle {frac {chi (omega ^{prime })}{omega ^{prime }-omega }}} 在复面上半可析。留数定理得到对任何在复面上半的积分路径:选用实轴上的路径、跳过任何实轴上极点、再以复面上半圆完成。把积分分解成三部分。其中半圆部分长度和 | ω | {displaystyle |omega |} 成正比,因此只要 χ ( ω ′ ) {displaystyle chi (omega ^{prime })} 消失比 1 / ω ′ {displaystyle {1}/{omega ^{prime }}} 快,对半圆部分积分趋向零。因此积分只剩实轴上直线部和跳过极点的小半圆:以上第二项留数定理的结果。重组后得到克喇末-克勒尼希关系式:分母里的虚数 i {displaystyle i} 意味者这是连系实部和虚部的公式。把 χ ( ω ) {displaystyle chi (omega )} 分解成实部和虚部可轻易得到更早的公式。可以将Kramers-Kronig关系应用于响应函数理论。物理上,响应函数 χ ( t − t ′ ) {displaystyle chi (t-t^{prime })} 概括系统对在时间 t ′ {displaystyle t^{prime }} 的作用力 F ( t ′ ) {displaystyle F(t^{prime })} 在另一时间 t {displaystyle t} 的反应 P ( t ) {displaystyle P(t)} :因为系统不能在施力前有任何反应因此当 t ′ > t {displaystyle t^{prime }>t} , χ ( t − t ′ ) = 0 {displaystyle chi (t-t^{prime })=0} 。 可以证明这因果关系意味着 χ ( τ ) {displaystyle chi (tau )} 的傅立叶变换 χ ( ω ) {displaystyle chi (omega )} 在 ω {displaystyle omega } 复面上半可析。另外如果我们施加系统一个远高于它最高共振频率的高频作用力,此时作用力转换太快而系统不能即时做出反应,因此 ω {displaystyle omega } 很大时, χ ( ω ) {displaystyle chi (omega )} 会趋近于0。从这些物理考量,可知物理反应函数 χ ( ω ) {displaystyle chi (omega )} 通常符合克喇末-克勒尼希关系式的前提条件。反应函数 χ ( ω ) {displaystyle chi (omega )} 的虚部和作用力异相。它概括系统如何消散能量。因此利用克喇末-克勒尼希关系,我们可以透过观察系统能量消耗而得到它对作用力的同相(不做功)反应,反之亦然。上述函数的积分路径是从 − ∞ {displaystyle -infty } 到 ∞ {displaystyle infty } ,其中出现了负频率。幸运的是,多数系统中,正频响应决定了负频响应,这是因为 χ ( ω ) {displaystyle chi (omega )} 是实数变量 χ ( t − t ′ ) {displaystyle chi (t-t')} 的傅里叶变换,根据对实数进行傅里叶变换的性质, χ ( − ω ) = χ ∗ ( ω ) {displaystyle chi (-omega )=chi ^{*}(omega )} , χ 1 ( ω ) {displaystyle chi _{1}(omega )} 是频率 ω {displaystyle omega } 的偶函数,而 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 是 ω {displaystyle omega } 的奇函数。根据该性质,积分可以从正负无穷区间约化为 [ 0 , ∞ ) {displaystyle [0,infty )} 的区间上。考虑实部 χ 1 ( ω ) {displaystyle chi _{1}(omega )} 的第一个关系,积分函数上下同乘 ω ′ + ω {displaystyle omega '+omega } 可得:由于 χ 2 ( ω ) {displaystyle chi _{2}(omega )} 为奇函数,第二项为零,剩下的部分为类似的推导亦可用于虚部:该 Kramers-Kronig 关系在物理响应函数上的很有用处。

相关

  • 耳部疾病ICD-10 第八章:耳和乳突疾病,为世界卫生组织创建的ICD-10中涉及耳与乳突的疾病分类。外耳疾病(H60-H62)中耳和乳突疾病(H65-H75)内耳疾病(H80-H83)耳的其他疾患(H90-H95)
  • 运动系统运动系统是动物体用来进行诸如移动,抓取,进食,眼动以及言语等骨骼肌运动的器官组成的功能整体。运动系统的主要部分包括位于外周的骨骼肌和神经以及位于中枢的脑和脊髓。脑和脊
  • Z-testZ检验,也称“U检验”,是为了检验在零假设情况下测试数据能否可以接近正态分布的一种统计测试。根据中心极限定理,在大样本条件下许多测验可以被贴合为正态分布。在不同的显著性
  • 原发疫源地指示病例(英语:index case),又称为原发病例(英语:primary case),俗称零号病人或零号感染源(英语:patient zero),在流行病学调查中是指在一定人群中的最初的病例。指示病例可能表示疾病的
  • 规范玻色子规范玻色子是传递基本相互作用的媒介粒子,它们的自旋都为整数,属于玻色子,它们在粒子物理学的标准模型内都是基本粒子。规范玻色子包括:标准模型预言的另外一种玻色子——希格斯
  • 北极圈北极圈是指纬度数值为北纬66.5°的一个假想圈,是北寒带与北温带的分界线,与黄赤交角(南回归线、北回归线所在的纬度数值)余角。北极圈以北的地区被称为“北极圈内”。通常,北极圈
  • 尤塞米提谷坐标:37°43′18″N 119°38′47″W / 37.72167°N 119.64639°W / 37.72167; -119.64639约塞米蒂谷(Yosemite Valley),又译优山美地、优胜美地,位于美国加利福尼亚州中东部内华
  • 苦(梵语:दुःख,转写:duḥkha,巴利语:dukkha),佛教术语,字面意义为痛苦、不安、不满足等。这是佛教中最基本的教义之一,为四圣谛之一 。梵文duḥkha,汉传佛教一般译为“苦”,或者“苦
  • 欧亚经济联盟欧亚经济联盟(ЕАЭС),亦称为欧亚联盟(EEU),是一个由俄罗斯、白俄罗斯、哈萨克斯坦、吉尔吉斯斯坦、亚美尼亚5个前苏联国家为加深经济、政治合作而组建的国际组织。2011年10月,该
  • 戈达德太空飞行中心戈达德太空飞行中心(Goddard Space Flight Center)是美国国家航空航天局一个主要研究中心,位于华盛顿特区东北方约6.5公里处马里兰州的绿带城。戈达德太空飞行中心成立于1959年