✍ dations ◷ 2025-11-08 17:16:43 #图
在数学的分支图论中,图(Graph)用于表示物件与物件之间的关系,是图论的基本研究对象。一张图由一些小圆点(称为顶点或结点)和连结这些圆点的直线或曲线(称为边)组成。西尔维斯特在1878年首次提出“图”这一名词。图有多种变体,包括简单图、多重图、有向图、无向图等,但大体上有以下两种定义方式。一张图 G {displaystyle G} 是一个二元组 ( V , E ) {displaystyle (V,E)} ,其中 V {displaystyle V} 称为顶点集, E {displaystyle E} 称为边集。它们亦可写成 V ( G ) {displaystyle V(G)} 和 E ( G ) {displaystyle E(G)} 。 E {displaystyle E} 的元素是一个二元组数对,用 ( x , y ) {displaystyle (x,y)} 表示,其中 x , y ∈ V {displaystyle x,yin V} 。一张图 G {displaystyle G} 是一个三元组 ( V , E , I ) {displaystyle (V,E,I)} ,其中 V {displaystyle V} 称为顶集(Vertices set), E {displaystyle E} 称为边集(Edges set), E {displaystyle E} 与 V {displaystyle V} 不相交; I {displaystyle I} 称为关联函数, I {displaystyle I} 将 E {displaystyle E} 中的每一个元素映射到 V × V {displaystyle Vtimes V} 。如果 I ( e ) = ( u , v ) ( e ∈ E , u , v ∈ V ) {displaystyle I(e)=(u,v)(ein E,u,vin V)} 那么称边 e {displaystyle e} 连接顶点 u , v {displaystyle u,v} ,而 u , v {displaystyle u,v} 则称作 e {displaystyle e} 的端点, u , v {displaystyle u,v} 此时关于 e {displaystyle e} 相邻。同时,若两条边 i , j {displaystyle i,j} 有一个公共顶点 u {displaystyle u} ,则称 i , j {displaystyle i,j} 关于 u {displaystyle u} 相邻。如果给图的每条边规定一个方向,那么得到的图称为有向图,其边也称为有向边。在有向图中,与一个节点相关联的边有出边和入边之分,而与一个有向边关联的两个点也有始点和终点之分。相反,边没有方向的图称为无向图。一个图如果若允许两结点间的边数多于一条,又允许顶点通过同一条边和自己关联,则为多重图的概念。它只能用“三元组的定义”。一个不带权图中若两点不相邻,邻接矩阵相应位置为0,对带权图(网),相应位置为∞。一个图的邻接矩阵表示是唯一的,但其邻接表表示不唯一。在邻接表中,对图中每个顶点建立一个单链表(并按建立的次序编号),第i个单链表中的结点表示依附于顶点vi的边(对于有向图是以顶点vi为尾的弧)。每个结点由两个域组成:邻接点域(Adjvex),用以指示与vi邻接的点在图中的位置,链域(Nextarc)用以指向依附于顶点vi的下一条边所对应的结点。如果用邻接表存放网(带权图)的信息,则还需要在结点中增加一个存放权值的域(Info)。每个顶点的单链表中结点的个数即为该顶点的出度(与该顶点连接的边的总数)。无论是存储图或网,都需要在每个单链表前设一表头结点,这些表头结点的第一个域data用于存放结点vi的编号i,第二个域firstarc用于指向链表中第一个结点。图的遍历方法有深度优先搜索法和广度(宽度)优先搜索法。深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点vi1,vi2,…, vi t,并均标记已访问过,然后再按照vi1,vi2,…, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。其非递归算法如下:对于图 G ( V , E ) {displaystyle G(V,E)} 与图 G ′ ( V ′ , E ′ ) {displaystyle G'(V',E')} ,若存在从 V {displaystyle V} 到 V ′ {displaystyle V'} 的一一映射f,使任意 ( u , v ) ∈ E {displaystyle (u,v)in E} ,都有 ( f ( u ) , f ( v ) ) ∈ E ′ {displaystyle (f(u),f(v))in E'} ,则称 G {displaystyle G} 与 G ′ {displaystyle G'} 同构

相关

  • 细胞因子细胞因子(英语:cytokine,又称细胞介素、细胞激素、细胞素、细胞活素),是一组蛋白质及多肽,在生物中用作信号蛋白。这些类似激素或神经递质的蛋白用作细胞间沟通的信号。细胞因子多
  • 纵膈纵膈(mediastinum)是描述胸腔中心为疏松结缔组织所包围的构造,并无一个明显的界限。本区域包含许多解剖构造,包含心脏及其周围血管系统、食道、气管、膈神经(英语:phrenic nerve)、
  • 隐藻门隐藻门是一大类的藻类,大都具有色素体,淡水中常见。细胞大小约为10-50微米,形状扁平,有两个稍微不等长的鞭毛。一个著名特征是有红藻寄生于其细胞中,形成一种内共生关系,并把藻胆
  • 希腊语希腊语(Ελληνικά),中文也称希腊文,是一种印欧语系的语言,广泛用于希腊、阿尔巴尼亚、塞浦路斯等国,亦有使用于土耳其(包括小亚细亚一带)的某些地区。希腊语言元音发达,希腊人
  • 加州大学坐标:37°48′08″N 122°16′17″W / 37.802168°N 122.271281°W / 37.802168; -122.271281加利福尼亚大学(英语:University of California),简称加州大学(UC),建立于1868年,是美国
  • 印度艾滋病情况根据印度国家艾滋病控制组织(英语:National AIDS Control Organisation)的数据,2013年后天免疫缺乏症候群在印度的患病率为0.27,估计印度有239万人患有艾滋病,而英国医学期刊在201
  • 钠硫电池钠硫电池是一种由液体钠(Na)和硫(S)组成的熔盐电池。这类电池拥有高能量密度、高充/放电效率(89-92%)和长寿命周期,亦由廉价的材料制造。由于本电池操作温度高达300至350°C,
  • 铝离子电池铝离子电池(Aluminium-ion battery)是一类可充电电池,放电时,铝离子从阴极移动到阳极;充电时,铝离子又回到阴极。铝离子电池与锂离子电池功能相似,但由于组成和结构不同,电能输出水
  • 社会阶级实证主义 · 反实证主义(英语:Antipositivism) 结构主义 · 冲突理论 中层理论 · 形式理论 批判理论人口 · 团体 · 组织(英语:Organizational theory) · 社会化 社会性
  • μ子催化Μ子催化聚变是一种核聚变过程,可以让核聚变的发生温度远低于正常情况,即使在室温下或更低的温度都可以触发核聚变。它是核催化已知聚变反应的几种方法之一。μ子是一种不稳定