集合 (数学)

✍ dations ◷ 2025-12-02 13:27:05 #集合论,朴素集合论,公理化集合论

集合(英语:Set,或简称集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合论─朴素集合论─中的定义,集合就是“一堆东西”。)集合里的事物(“东西”),叫作元素。若然 x {\displaystyle x} ,就是将数个对象归类而分成为一个或数个形态各异的大小整体。一般来讲,集合是具有某种特性的事物的整体,或是一些确认对象的汇集。构成集合的事物或对象称作元素或是成员。集合的元素可以是任何事物,可以是人,可以是物,也可以是字母或数字等。

在数学交流当中为了方便,集合会有一些别名。比如:

元素通常用 a ,   b ,   c ,   d ,   x {\displaystyle a,\ b,\ c,\ d,\ x} 有三个元素、而集合 有四个。一个集合中元素的数目称为该集合的基数。数学写法有很多种,不同作者及不同书本用不同的写法: Card ( A ) ,   # A ,   | A | ,   A ¯ ,   A ¯ ¯ {\displaystyle \operatorname {Card} (A),\ \#A,\ |A|,\ {\bar {A}},\ {\bar {\bar {A}}}}

集合可以没有元素。这样的集合叫做空集,用 { } {\displaystyle \{\}} 或符号 {\displaystyle \varnothing } 表示。比如:在2004年,集合 A {\displaystyle A} 是所有住在月球上的人,它没有元素,则 A = {\displaystyle A=\varnothing } 。在数学上,空集非常重要。更多资讯请参阅空集。

如果集合只含有限个元素,那么这个集合可以称为有限集合。

集合也可以有无穷多个元素,这样的集合称为无限集合。比如:自然数集便是无限集合。关于无穷大和集合的大小的其他资讯请见集合的势。

若把集合看作“符合任意特定性质的一堆东西”,会得出所谓罗素悖论。为解决罗素悖论,数学家提出公理化集合论。在公理集合论中,集合是一个不加定义的概念。

在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。

类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算并不是都能进行的。

定义 类A如果满足条件“ B ( A B ) {\displaystyle \exists B(A\in B)} ”,则称类A为一个集合(简称为集),记为 Set ( A ) {\displaystyle \operatorname {Set} (A)} 。否则称为本性类。

这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。

相关

  • 病毒病毒性疾病(viral disease;viral infection;infectious disease)发生时,生物体被病原体侵入,感染性病毒颗粒附着并进入易感细胞。病毒性疾病通常通过临床表现来检测,例如发烧前的严
  • 纤维连接蛋白1E88, 1E8B, 1FBR, 1FNA, 1FNF, 1FNH, 1J8K, 1O9A, 1OWW, 1Q38, 1QGB, 1QO6, 1TTF, 1TTG, 2CG6, 2CG7, 2CK2, 2CKU, 2EC3, 2FN2, 2FNB, 2GEE, 2H41, 2H45, 2HA1, 2OCF, 2RKY
  • Parietal pleura壁胸膜(英语:Parietal pleura)是胸膜的一部分。壁胸膜被覆于胸壁内侧、纵隔两侧和膈上面,也突至颈根部等处。按壁胸膜衬覆部位不同分为以下部分:
  • 原子核滴线在以原子核内中子数为横坐标,以质子数为纵坐标的核素图上,在丰质子一侧和丰中子一侧,各有一条边界线,超过边界线的原子核无法存在,称为原子核滴线,丰质子一侧的滴线称为质子滴线
  • 能质能量(古希腊语中 ἐνέργεια energeia 意指“活动、操作”)在物理学中是一个间接观察到的物理量。它往往被视为某一个物理系统对其他的物理系统做功的能力。由于功被定
  • 西方西方指的可能是:
  • 国立高雄科技大学国立高雄科技大学(英语译名:National Kaohsiung University of Science and Technology),简称高雄科大、高科大、高科 、NKUST。 是一所位于高雄市的国立科技大学,为台湾学生人数
  • 寺院诸法度寺院诸法度(日语:寺院諸法度/じいんしょはっと Jiinshohatto)是江户时代德川幕府对佛教教团制定的诸法度之总称。但是,非固定的称呼,文献上有“诸宗寺院法度”(諸宗寺院法度)、“诸
  • 罗斯海豹属大眼海豹(学名:Ommatophoca rossii),是分布于南极大陆附近海域的一种海豹,因眼睛比较大(眼径达7厘米),故名,又因英国南极探险家詹姆斯·克拉克·罗斯于1841年首次描述,故又称罗氏海豹
  • 约翰·C·布雷肯里奇约翰·卡贝尔·布雷肯里奇(John Cabell Breckinridge,1821年1月16日-1875年5月17日),美国政治家,美国民主党成员,曾任美国众议院议员(1851年-1855年)、美国副总统(1857年-1861年)、美国