集合 (数学)

✍ dations ◷ 2025-02-23 22:44:16 #集合论,朴素集合论,公理化集合论

集合(英语:Set,或简称集)是基本的数学概念,它是集合论的研究对象,指具有某种特定性质的事物的总体,(在最原始的集合论─朴素集合论─中的定义,集合就是“一堆东西”。)集合里的事物(“东西”),叫作元素。若然 x {\displaystyle x} ,就是将数个对象归类而分成为一个或数个形态各异的大小整体。一般来讲,集合是具有某种特性的事物的整体,或是一些确认对象的汇集。构成集合的事物或对象称作元素或是成员。集合的元素可以是任何事物,可以是人,可以是物,也可以是字母或数字等。

在数学交流当中为了方便,集合会有一些别名。比如:

元素通常用 a ,   b ,   c ,   d ,   x {\displaystyle a,\ b,\ c,\ d,\ x} 有三个元素、而集合 有四个。一个集合中元素的数目称为该集合的基数。数学写法有很多种,不同作者及不同书本用不同的写法: Card ( A ) ,   # A ,   | A | ,   A ¯ ,   A ¯ ¯ {\displaystyle \operatorname {Card} (A),\ \#A,\ |A|,\ {\bar {A}},\ {\bar {\bar {A}}}}

集合可以没有元素。这样的集合叫做空集,用 { } {\displaystyle \{\}} 或符号 {\displaystyle \varnothing } 表示。比如:在2004年,集合 A {\displaystyle A} 是所有住在月球上的人,它没有元素,则 A = {\displaystyle A=\varnothing } 。在数学上,空集非常重要。更多资讯请参阅空集。

如果集合只含有限个元素,那么这个集合可以称为有限集合。

集合也可以有无穷多个元素,这样的集合称为无限集合。比如:自然数集便是无限集合。关于无穷大和集合的大小的其他资讯请见集合的势。

若把集合看作“符合任意特定性质的一堆东西”,会得出所谓罗素悖论。为解决罗素悖论,数学家提出公理化集合论。在公理集合论中,集合是一个不加定义的概念。

在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。

类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算并不是都能进行的。

定义 类A如果满足条件“ B ( A B ) {\displaystyle \exists B(A\in B)} ”,则称类A为一个集合(简称为集),记为 Set ( A ) {\displaystyle \operatorname {Set} (A)} 。否则称为本性类。

这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。

相关

  • TechCrunchTechCrunch是一个聚焦信息技术公司报道的新闻网站,他们关注的公司大小各异,从创业公司到纳斯达克指数所包含的顶尖企业都有涉及。这个网站在2005年由迈克尔·阿灵顿创始。2010
  • 反复用水或酒精稀释一特定物质在顺势疗法中,顺势疗法稀释(专业人士称之为"dynamisation"或"potentisation",“激发”)是将物质用酒精或蒸馏水稀释然后剧烈摇动(被称为 "succussion")的过程。像石英和牡蛎壳这样
  • 保险公司保险公司是采用公司组织形式的保险人,经营保险业务。保险展业是保险公司引导具有同类风险的人购买保险的行为。保险公司通过其专业人员直接招揽业务称作“直接展业”,保险公司
  • 异黄酮异黄酮(Isoflavones)是自然界的异黄酮类化合物,其中许多是哺乳动物的植物性雌激素(英语:phytoestrogen)。异黄酮主要是由豆科植物所分泌。异黄酮和许多相关的植物性雌激素会作为营
  • 响应元件响应元件或应答元件(英语:Response elements)是基因启动子区域的一段短的DNA序列,能与特异的转录因子结合,调控基因的转录。在接受外界刺激条件下,转录激活蛋白会结合到响应元件上
  • 头夹肌头夹肌(Splenius capitis muscle)是脖子的肌肉。头夹肌(Splenius capitis muscle)起始于项韧带的下半部、第七段颈椎的棘突和上面三段或四段胸椎的棘突。肌肉纤维向上和横向,在胸
  • 维瑟尔埃利瑟·“埃利”·维瑟尔(Eliezer "Elie" Wiesel,1928年9月30日-2016年7月2日),是一位作家、教师、活跃政治家、诺贝尔奖得主与犹太人大屠杀的幸存者。第一本作品《夜》描述他一
  • 子叶子叶(cotyledon)是植物种子胚的组成部分之一,位于胚茎上部,具有贮存养料或幼苗时期进行同化作用的器官。无胚乳种子的子叶,因为贮存养料较多,所以特别肥厚,如豆科、葫芦科等植物的
  • 2000 OO67(87269) 2000 OO67(也可以书写为(87269) 2000 OO67)是一颗小的 海王星外天体,于2000年的深度黄道巡天中被发现。它以高离心率著称,远日点的距离超过1,000天文单位,而近日点只有21
  • N-末端N端(亦作N-端,英语:N-terminus),又称氮端、氨基端,指多肽链具有游离的α氨基的末端。在转译过程中,多肽链是从N端往C端合成的,因而在书写表示多肽序列时,从N端开始书写,从左到右写到C