戴尔指数(英语:Theil Index)又称为泰尔指数,是一个衡量经济不平等的统计量。它也曾经用来衡量其他社会不平等现象,如种族隔离。
戴尔指数主要是利用信息论中的资讯熵的概念导出的。戴尔指数等于资讯冗余,也就是资料最大可能资讯熵减去观测到的资讯熵,它是广义熵指数(英语:generalized entropy index)的特例,可以被视为冗余度、单样性、不平等、非随机性和可压缩性的度量。
戴尔指数最早由荷兰鹿特丹伊拉斯姆斯大学的计量经济学家亨利·戴尔(英语:Henri Theil)(Henri Theil)所提出。
假设一个人口为的群体,其收入分别为 ( = 1,...,),则它的戴尔指数定义为:
而戴尔指数则定义为
其中 ( = 0,...,),其中是收入为的人口比例,而 = 代表总收入,可以得知 定义为:
这里的是一个整数,代表最小收入增量(比如新台币1元)。
如果收入分布是个连续分布函数(),取值0到无穷,其中() 是收入为 到 + 的人口数量,那戴尔指数定义为:
其中平均T 除以 可以将方程归一化到0到1的范围,但这样违反独立公理(英语:Economic inequality metrics): 并不符合衡量不平等的标准。
戴尔指数导自克劳德·夏农的信息熵,他的一般数学形式为:
其中 是从人群里找到的几率。是玻尔兹曼常数。在信息论中,当信息以二进制数字给出时,并且对数基底为2。在物理学和戴尔指数的计算中,选择自然对数作为对数基底。当替换成人均收入时,需要除以总收入达到归一化。那可以导出,观察到的信息熵为:
设为戴尔指数,为夏农熵,则有
其中,ln(N)是理论最大熵。香浓根据事件发生概率导出的其熵测度。它可以用戴尔系数解释为自某个特定个人处随机取得一块钱的概率。并与其第一项,即总收入中个人所占份额相同。
戴尔指数的一个优点是它是某个子群体中不平等的加权和。例如,美国国内的不平等就是每个州的不平等的加权和,由该州收入相对于国家总收入的比值来加权。
如果人口被划分为个子群体, 为群体 的收入比例,为该子群体的戴尔指数,而 为子群体 的平均收入,则戴尔指数为
因此,我们可以说某个特定群体给总体“贡献了”一定数量的不平等。
另外一个被广泛使用的不平等度量为基尼系数,该系数对于很多人来说由于基于劳伦茨曲线而非常直观。但是它却没有戴尔指数容易分解。