可数集

✍ dations ◷ 2025-11-09 20:02:22 #可数集
在数学上,可数集,或称可列集,是与自然数集的某个子集具有相同基数(等势)的集合。在这个意义下,可数集由有限可数集和可数无穷集组成。不是可数集的无穷集称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数有可能永远无法终止,集合中每一个特定的元素都将对应一个自然数。“可数集”这个术语有时也指代可数无穷集,即仅代表能和自然数集本身一一对应的集合。两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。为了避免歧义,前一种意义上的可数有时称为至多可数,后一种可数集则称为无限可数集。如果存在从 S {displaystyle S} 到自然数集合 N = { 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{1,2,3,ldots right}} 存在单射函数,则 S {displaystyle S} 称为可数集。如果 S {displaystyle S} 还是满射,则同样是双射,则称 S {displaystyle S} 是无限可数集。换句话说,一个集合要想是无限可数集,它要和自然数集 N {displaystyle mathbb {N} } 有一一对应关系。如上所述,这个术语不普遍:一些作者在这里使用可数来表示被称为“无限可数”,并没有包括有限集。由定义易知所有偶数所构成的集合为可列的,因为我们可以将所有的 n {displaystyle n} 都对应到 2 n {displaystyle 2n} ,如此就完成了一一对应。类似地,不难证明所有整数构成的集合 Z {displaystyle Z} 、所有有理数构成的集合 Q {displaystyle Q} 、甚至所有代数数构成的集合都是可列的。此外,自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 是可数的,这是因为可以定义一个从自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 到自然数集合 N {displaystyle mathbb {N} } 的单射函数 f ( p , q ) = 2 p 3 q {displaystyle f(p,q)=2^{p}3^{q}} 之故。可数无限多个可数集的联集是可数的。并非所有的无穷集都可数。乔治·康托首先指出存在有不可列的无穷集合。他利用他发明的对角论证法证明了由所有实数构成的集合 R {displaystyle R} 是不可列的,即 R {displaystyle R} 与 N {displaystyle N} 之间不可能存在一种一一对应。这同时也表示实数当中存在有一些数不是代数数,因为刚才已经说过代数数是可列的;于是这就给出了一种超越数存在的非构造性证明。由定义,如果存在从 S {displaystyle S} 到自然数集合 N = { 0 , 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{0,1,2,3,ldots right}} 存在单射函数 f : S → N {displaystyle f:Srightarrow mathbb {N} } ,则 S {displaystyle S} 称为可数集。这似乎自然地把集合划分为不同类别:把所有包含一个元素的集合放在一起;包含两个元素的集合在一起......最后,把所有无限集合放在一起,并认为它们具有相同的大小。然而,在大小的自然定义下,这种观点是不确切的。为了阐述这一点,我们需要一个双射的概念。虽然双射看起来比数更加高深,但原本数学发展中集论定义函数要先于数字。因为它们都是基于更简单的集合。这就引出了双射的概念:由于 { a , b , c } {displaystyle left{a,b,cright}} 的每个元素都可以和 { 1 , 2 , 3 } {displaystyle left{1,2,3right}} 中准确的一个配对,并且反过来也同样,这就定义了一个双射。我们将这个情境一般化,定义当且仅当它们之间存在双射,两个集合的大小相同。对于有限集,这里给出了“大小相同”的常用定义。那么对于无限集呢?考虑集合 A = { 1 , 2 , 3 , … } {displaystyle A=left{1,2,3,ldots right}} (正整数集),和 B = { 2 , 4 , 6 , … } {displaystyle B=left{2,4,6,ldots right}} (正偶数集)。我们说,在我们的定义下,这些集合有相同的大小,并且因此B是无限可数集。我们需要证明它们之间存在双射。但这是很简单的,运用 n ↔ 2 n {displaystyle nleftrightarrow 2n} ,那么正如前面的例子, A {displaystyle A} 的每个元素都已和 B {displaystyle B} 中准确的一个配对,并且反过来也同样。因而它们大小相同。这给出了一个集合与其一个合适的子集大小相同的例子,这种情形在有限集中是不可能的。同样,自然数的有序对的集合是无限可数集,可以沿着图中的一种路径:配对结果就像这样:显然这个映射可以覆盖所有这些有序对。邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 水疱病毒属水稻病毒属(Oryzavirus),又称作水稻皱缩矮化病毒,是呼肠孤病毒科(Reoviridae)中的一属,其代表种为:*水稻破(烂;褴)褛矮小(化)病毒(Rice ragged stunt virus),为一类植物病毒。
  • 苔原气候苔原气候是极地气候两大类型之一,在柯本气候分类法中标记为ET。北半球主要分布于亚洲、欧洲及北美的北冰洋沿岸地区;南半球同纬度地区为海洋所覆盖,除南极洲沿海个别岛屿以外,基
  • 密克罗尼西亚密克罗尼西亚(Micronesia)是太平洋三大岛群之一,希腊语字根为“小岛”之义,位于西太平洋,在南纬4°-北纬22°、东经130°-180°之间;有2500个以上的岛屿,绝大部分在赤道以北,东西延
  • 犹太会堂犹太教堂(或称犹太会堂)的西文名称是从希腊语συναγωγη而来,转换成拉丁字母是synagogé,直译就是“聚会的场所”。各欧洲语言中称呼类似,如法语和英语的synagogue,意大利语
  • 美学中世纪美学属于基督教神学,主张“上帝至美”。
  • 传导性失语症传导性失语症,也称作联合性失语症,是一种相对少见的失语症。这种失语症属于后天性语言障碍,特征是听觉理解完好,说话平顺流畅,但会语无伦次,复诵能力也严重低落。传导性失语症患者
  • 眼睑眼睑俗称眼皮、目胞,位于眼眶(英语:Orbit (anatomy))以内、眼球以外,是保护眼球的主要器官。眼睑分为上睑和下睑,分隔上下睑的裂缝称为睑裂。睁眼时上下睑分开,闭眼时上下睑贴合。
  • 行为能力行为能力(capacity)为一种法律上的概念,其与“权利能力”及“意思能力”不同,乃指为法律行为之资格,亦即个人以独自的意思表示,使其行为发生法律上效果的资格而言。民法中基于私法
  • 摹状词理论摹状词理论(theory of descriptions 或 Russell's Theory of Descriptions,简称RTD)是数理逻辑、语言哲学和分析哲学上的一个极重要的理论,被誉为分析哲学的典范。运用这个理论
  • 婚礼婚礼是一种缔结婚姻的仪式,有法律公证仪式或宗教仪式等,用来庆祝一段婚姻的开始,代表结婚。所有的民族和国家都有其传统的婚礼仪式,是其民俗文化的继承途径,也是本民族文化教育的