可数集

✍ dations ◷ 2025-11-16 20:36:20 #可数集
在数学上,可数集,或称可列集,是与自然数集的某个子集具有相同基数(等势)的集合。在这个意义下,可数集由有限可数集和可数无穷集组成。不是可数集的无穷集称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数有可能永远无法终止,集合中每一个特定的元素都将对应一个自然数。“可数集”这个术语有时也指代可数无穷集,即仅代表能和自然数集本身一一对应的集合。两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。为了避免歧义,前一种意义上的可数有时称为至多可数,后一种可数集则称为无限可数集。如果存在从 S {displaystyle S} 到自然数集合 N = { 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{1,2,3,ldots right}} 存在单射函数,则 S {displaystyle S} 称为可数集。如果 S {displaystyle S} 还是满射,则同样是双射,则称 S {displaystyle S} 是无限可数集。换句话说,一个集合要想是无限可数集,它要和自然数集 N {displaystyle mathbb {N} } 有一一对应关系。如上所述,这个术语不普遍:一些作者在这里使用可数来表示被称为“无限可数”,并没有包括有限集。由定义易知所有偶数所构成的集合为可列的,因为我们可以将所有的 n {displaystyle n} 都对应到 2 n {displaystyle 2n} ,如此就完成了一一对应。类似地,不难证明所有整数构成的集合 Z {displaystyle Z} 、所有有理数构成的集合 Q {displaystyle Q} 、甚至所有代数数构成的集合都是可列的。此外,自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 是可数的,这是因为可以定义一个从自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 到自然数集合 N {displaystyle mathbb {N} } 的单射函数 f ( p , q ) = 2 p 3 q {displaystyle f(p,q)=2^{p}3^{q}} 之故。可数无限多个可数集的联集是可数的。并非所有的无穷集都可数。乔治·康托首先指出存在有不可列的无穷集合。他利用他发明的对角论证法证明了由所有实数构成的集合 R {displaystyle R} 是不可列的,即 R {displaystyle R} 与 N {displaystyle N} 之间不可能存在一种一一对应。这同时也表示实数当中存在有一些数不是代数数,因为刚才已经说过代数数是可列的;于是这就给出了一种超越数存在的非构造性证明。由定义,如果存在从 S {displaystyle S} 到自然数集合 N = { 0 , 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{0,1,2,3,ldots right}} 存在单射函数 f : S → N {displaystyle f:Srightarrow mathbb {N} } ,则 S {displaystyle S} 称为可数集。这似乎自然地把集合划分为不同类别:把所有包含一个元素的集合放在一起;包含两个元素的集合在一起......最后,把所有无限集合放在一起,并认为它们具有相同的大小。然而,在大小的自然定义下,这种观点是不确切的。为了阐述这一点,我们需要一个双射的概念。虽然双射看起来比数更加高深,但原本数学发展中集论定义函数要先于数字。因为它们都是基于更简单的集合。这就引出了双射的概念:由于 { a , b , c } {displaystyle left{a,b,cright}} 的每个元素都可以和 { 1 , 2 , 3 } {displaystyle left{1,2,3right}} 中准确的一个配对,并且反过来也同样,这就定义了一个双射。我们将这个情境一般化,定义当且仅当它们之间存在双射,两个集合的大小相同。对于有限集,这里给出了“大小相同”的常用定义。那么对于无限集呢?考虑集合 A = { 1 , 2 , 3 , … } {displaystyle A=left{1,2,3,ldots right}} (正整数集),和 B = { 2 , 4 , 6 , … } {displaystyle B=left{2,4,6,ldots right}} (正偶数集)。我们说,在我们的定义下,这些集合有相同的大小,并且因此B是无限可数集。我们需要证明它们之间存在双射。但这是很简单的,运用 n ↔ 2 n {displaystyle nleftrightarrow 2n} ,那么正如前面的例子, A {displaystyle A} 的每个元素都已和 B {displaystyle B} 中准确的一个配对,并且反过来也同样。因而它们大小相同。这给出了一个集合与其一个合适的子集大小相同的例子,这种情形在有限集中是不可能的。同样,自然数的有序对的集合是无限可数集,可以沿着图中的一种路径:配对结果就像这样:显然这个映射可以覆盖所有这些有序对。邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 周产期死亡周产期死亡(PNM, Perinatal mortality)是指胎儿或是新生儿的死亡,是计算周产期死亡率的基础。周产期死亡率的标准定义较多样,特别是涉及到是否须把早期胎儿和晚期新生儿死亡纳入
  • 缺血性心脏病冠状动脉疾病(英语:coronary artery disease, CAD)又称为缺血性心脏病或简称冠心病(英语:ischemic heart disease, IHD)、冠状动脉粥状硬化心脏病、冠状动脉粥状硬化心血管疾病(英
  • 分类单元分类单元(分类群,德语:Taxon)是指分类学上的一个群体,不管处哪一个分类阶层(taxonomic rank),称此群体为分类群。各个分类阶层皆可能具多个分类群,而其整体亦为一个分类群。分类群可
  • 肝脏(英语:liver)为脊椎动物体内的一种器官,以代谢功能为主,并扮演着除去毒素,储存糖原(肝糖),分泌蛋白质合成等重要角色。肝脏也会制造胆汁。在医学用字上,常以拉丁语字首hepato-或he
  • 大流行瘟疫,指大型且具有传染力又会造成死亡的流行病,在广大区域或全球多处传染人或其他物种。现代医学卫生发达,许多会造成大量死亡的瘟疫都有效控制为流行病等级。根据世界卫生组织
  • 生殖器官生殖器官是指在复杂生物体上任何与有性繁殖及组成生殖系统有关的组织(严格意义上,不一定都属于器官)。另外有相关的性器官一词,广义地说是指会带来性快感的器官。生殖腺是指产生
  • 羟氯喹羟氯喹(英文名称:Hydroxychloroquine、HCQ),商用为必赖克瘘 (英文名称:Plaquenil) ,是一种以口服形式摄取的抗疟疾类和4-氨基喹啉类药物,羟氯喹的口服形式为硫酸羟氯喹(Hydroxychlor
  • 卡巴拉卡巴拉(Kabbalah;he:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey
  • 铊中毒铊中毒(Thallium poisoning)是机体摄入含铊化合物后产生的中毒反应。铊对哺乳动物的毒性高于铅、汞等金属元素,与砷相当,其对成人的最小致死剂量为12mg/kg体重,对儿童为8.8~15mg/k
  • 上标上标,也叫上角标,是出现在一列正常字体文字的上边的数字、字母或其他符号,在其他字母或符号的左边或右边。上标具有多种用途,常用于公式、数学式或化学复合物及同位素。也能用于