可数集

✍ dations ◷ 2025-05-16 21:41:30 #可数集
在数学上,可数集,或称可列集,是与自然数集的某个子集具有相同基数(等势)的集合。在这个意义下,可数集由有限可数集和可数无穷集组成。不是可数集的无穷集称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数有可能永远无法终止,集合中每一个特定的元素都将对应一个自然数。“可数集”这个术语有时也指代可数无穷集,即仅代表能和自然数集本身一一对应的集合。两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。为了避免歧义,前一种意义上的可数有时称为至多可数,后一种可数集则称为无限可数集。如果存在从 S {displaystyle S} 到自然数集合 N = { 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{1,2,3,ldots right}} 存在单射函数,则 S {displaystyle S} 称为可数集。如果 S {displaystyle S} 还是满射,则同样是双射,则称 S {displaystyle S} 是无限可数集。换句话说,一个集合要想是无限可数集,它要和自然数集 N {displaystyle mathbb {N} } 有一一对应关系。如上所述,这个术语不普遍:一些作者在这里使用可数来表示被称为“无限可数”,并没有包括有限集。由定义易知所有偶数所构成的集合为可列的,因为我们可以将所有的 n {displaystyle n} 都对应到 2 n {displaystyle 2n} ,如此就完成了一一对应。类似地,不难证明所有整数构成的集合 Z {displaystyle Z} 、所有有理数构成的集合 Q {displaystyle Q} 、甚至所有代数数构成的集合都是可列的。此外,自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 是可数的,这是因为可以定义一个从自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 到自然数集合 N {displaystyle mathbb {N} } 的单射函数 f ( p , q ) = 2 p 3 q {displaystyle f(p,q)=2^{p}3^{q}} 之故。可数无限多个可数集的联集是可数的。并非所有的无穷集都可数。乔治·康托首先指出存在有不可列的无穷集合。他利用他发明的对角论证法证明了由所有实数构成的集合 R {displaystyle R} 是不可列的,即 R {displaystyle R} 与 N {displaystyle N} 之间不可能存在一种一一对应。这同时也表示实数当中存在有一些数不是代数数,因为刚才已经说过代数数是可列的;于是这就给出了一种超越数存在的非构造性证明。由定义,如果存在从 S {displaystyle S} 到自然数集合 N = { 0 , 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{0,1,2,3,ldots right}} 存在单射函数 f : S → N {displaystyle f:Srightarrow mathbb {N} } ,则 S {displaystyle S} 称为可数集。这似乎自然地把集合划分为不同类别:把所有包含一个元素的集合放在一起;包含两个元素的集合在一起......最后,把所有无限集合放在一起,并认为它们具有相同的大小。然而,在大小的自然定义下,这种观点是不确切的。为了阐述这一点,我们需要一个双射的概念。虽然双射看起来比数更加高深,但原本数学发展中集论定义函数要先于数字。因为它们都是基于更简单的集合。这就引出了双射的概念:由于 { a , b , c } {displaystyle left{a,b,cright}} 的每个元素都可以和 { 1 , 2 , 3 } {displaystyle left{1,2,3right}} 中准确的一个配对,并且反过来也同样,这就定义了一个双射。我们将这个情境一般化,定义当且仅当它们之间存在双射,两个集合的大小相同。对于有限集,这里给出了“大小相同”的常用定义。那么对于无限集呢?考虑集合 A = { 1 , 2 , 3 , … } {displaystyle A=left{1,2,3,ldots right}} (正整数集),和 B = { 2 , 4 , 6 , … } {displaystyle B=left{2,4,6,ldots right}} (正偶数集)。我们说,在我们的定义下,这些集合有相同的大小,并且因此B是无限可数集。我们需要证明它们之间存在双射。但这是很简单的,运用 n ↔ 2 n {displaystyle nleftrightarrow 2n} ,那么正如前面的例子, A {displaystyle A} 的每个元素都已和 B {displaystyle B} 中准确的一个配对,并且反过来也同样。因而它们大小相同。这给出了一个集合与其一个合适的子集大小相同的例子,这种情形在有限集中是不可能的。同样,自然数的有序对的集合是无限可数集,可以沿着图中的一种路径:配对结果就像这样:显然这个映射可以覆盖所有这些有序对。邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 氮循环氮循环(英语:Nitrogen cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的
  • 肿瘤标志物癌症标志物(英语:Cancer biomarkers)是指由肿瘤细胞直接产生或由非肿瘤细胞经肿瘤细胞诱导产生的物质。对于肿瘤标志物的检测可对肿瘤存在、发病过程及预后作出判断。癌症标志
  • 诺贝尔物理学奖诺贝尔物理学奖(瑞典语:Nobelpriset i fysik)是瑞典皇家科学院为表彰在物理学作出最杰出的贡献,自1901年起一年一度颁发的奖项;奖金由诺贝尔基金会发出。奖项是阿尔弗雷德·诺贝
  • CD8+细胞毒性T细胞(英语:cytotoxic T cell,TC或CTL),也称杀手T细胞(killer T cell),TC细胞、胞杀T细胞、胞毒T细胞,或CD8+ T细胞,属于T细胞的一种,可以杀死癌细胞、受病毒感染的细胞,以及其
  • 前庭大腺囊肿前庭大腺囊肿(英语:Bartholin's cyst、巴氏腺囊肿),是一种妇科外阴前庭大腺出现的囊肿疾病,它是由于腺管外口阻塞,使腺体分泌物不能排出,而形成的囊肿。它可能是细菌感染引起,也可能
  • 雨水数据来源:喷气推进实验室线上历书系统雨水,是二十四节气中第二个节气,指太阳到达黄经330°时,在公历每年2月18日-20日之间,表示雨水的增多。惊蛰曾在汉景帝时由于避讳而改名,并且
  • 极昼极昼(英语:Polar day,俗称 Midnight sun)又称永昼,是发生在北极圈以北或南极圈以南的极区夏季,有着午夜时分依然能够看见太阳的自然景观。大约在夏至(约是北半球的6月21日和南半球
  • 埃博拉出血热爆发列表此埃博拉出血热爆发列表叙述了埃博拉出血热的历年出现记录。此病于1976年首次现身,并常在非洲撒哈拉以南的地区造成间歇性流行。目前共有5种病毒被国际病毒分类委员会纳入埃
  • 开福区开福区为湖南省长沙市辖区,位于长沙城区中东部,成立于1996年7月10日。辖境北与望城区接壤,东与长沙县为邻,南部与芙蓉区和天心区为界,西面隔湘江与望城区和岳麓区相望。辖域总面
  • 风土地方性流行(Endemic)又称地方病或风土病,在流行病学中,指毋须从外界输入,便能在人口内持续出现的疾病,例如:在英国,水痘是地方性流行病,而疟疾并不是。虽然每年在英国都会出现数宗本