可数集

✍ dations ◷ 2025-06-27 12:01:25 #可数集
在数学上,可数集,或称可列集,是与自然数集的某个子集具有相同基数(等势)的集合。在这个意义下,可数集由有限可数集和可数无穷集组成。不是可数集的无穷集称为不可数集。这个术语是康托尔创造的。可数集的元素,正如其名,是“可以计数”的:尽管计数有可能永远无法终止,集合中每一个特定的元素都将对应一个自然数。“可数集”这个术语有时也指代可数无穷集,即仅代表能和自然数集本身一一对应的集合。两个定义的差别在于有限集合在前者中算作可数集,而在后者中不算作可数集。为了避免歧义,前一种意义上的可数有时称为至多可数,后一种可数集则称为无限可数集。如果存在从 S {displaystyle S} 到自然数集合 N = { 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{1,2,3,ldots right}} 存在单射函数,则 S {displaystyle S} 称为可数集。如果 S {displaystyle S} 还是满射,则同样是双射,则称 S {displaystyle S} 是无限可数集。换句话说,一个集合要想是无限可数集,它要和自然数集 N {displaystyle mathbb {N} } 有一一对应关系。如上所述,这个术语不普遍:一些作者在这里使用可数来表示被称为“无限可数”,并没有包括有限集。由定义易知所有偶数所构成的集合为可列的,因为我们可以将所有的 n {displaystyle n} 都对应到 2 n {displaystyle 2n} ,如此就完成了一一对应。类似地,不难证明所有整数构成的集合 Z {displaystyle Z} 、所有有理数构成的集合 Q {displaystyle Q} 、甚至所有代数数构成的集合都是可列的。此外,自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 是可数的,这是因为可以定义一个从自然数集合的笛卡尔积 N × N {displaystyle mathbb {N} times mathbb {N} } 到自然数集合 N {displaystyle mathbb {N} } 的单射函数 f ( p , q ) = 2 p 3 q {displaystyle f(p,q)=2^{p}3^{q}} 之故。可数无限多个可数集的联集是可数的。并非所有的无穷集都可数。乔治·康托首先指出存在有不可列的无穷集合。他利用他发明的对角论证法证明了由所有实数构成的集合 R {displaystyle R} 是不可列的,即 R {displaystyle R} 与 N {displaystyle N} 之间不可能存在一种一一对应。这同时也表示实数当中存在有一些数不是代数数,因为刚才已经说过代数数是可列的;于是这就给出了一种超越数存在的非构造性证明。由定义,如果存在从 S {displaystyle S} 到自然数集合 N = { 0 , 1 , 2 , 3 , … } {displaystyle mathbb {N} =left{0,1,2,3,ldots right}} 存在单射函数 f : S → N {displaystyle f:Srightarrow mathbb {N} } ,则 S {displaystyle S} 称为可数集。这似乎自然地把集合划分为不同类别:把所有包含一个元素的集合放在一起;包含两个元素的集合在一起......最后,把所有无限集合放在一起,并认为它们具有相同的大小。然而,在大小的自然定义下,这种观点是不确切的。为了阐述这一点,我们需要一个双射的概念。虽然双射看起来比数更加高深,但原本数学发展中集论定义函数要先于数字。因为它们都是基于更简单的集合。这就引出了双射的概念:由于 { a , b , c } {displaystyle left{a,b,cright}} 的每个元素都可以和 { 1 , 2 , 3 } {displaystyle left{1,2,3right}} 中准确的一个配对,并且反过来也同样,这就定义了一个双射。我们将这个情境一般化,定义当且仅当它们之间存在双射,两个集合的大小相同。对于有限集,这里给出了“大小相同”的常用定义。那么对于无限集呢?考虑集合 A = { 1 , 2 , 3 , … } {displaystyle A=left{1,2,3,ldots right}} (正整数集),和 B = { 2 , 4 , 6 , … } {displaystyle B=left{2,4,6,ldots right}} (正偶数集)。我们说,在我们的定义下,这些集合有相同的大小,并且因此B是无限可数集。我们需要证明它们之间存在双射。但这是很简单的,运用 n ↔ 2 n {displaystyle nleftrightarrow 2n} ,那么正如前面的例子, A {displaystyle A} 的每个元素都已和 B {displaystyle B} 中准确的一个配对,并且反过来也同样。因而它们大小相同。这给出了一个集合与其一个合适的子集大小相同的例子,这种情形在有限集中是不可能的。同样,自然数的有序对的集合是无限可数集,可以沿着图中的一种路径:配对结果就像这样:显然这个映射可以覆盖所有这些有序对。邻域  · 内部  · 边界  · 外部  · 极限点  · 孤点

相关

  • 分体词分体关系(英语:Meronymy)是一种语义关联。如果 A 是 B 的一部分,或 A 是 B 集合的成员,则称 A 是 B 的分体词,B 是 A 的整体词。例如,“手指”是“手”的分体词,“轮胎”是“汽车”
  • University of Minnesota明尼苏达大学双城分校(英语:University of Minnesota, Twin Cities),是位于美国明尼苏达州双城区(即明尼阿波利斯及圣保罗)的一所公立大学,为明尼苏达大学系统历史最悠久,规模最大的
  • 霜是一种通常用于皮肤的外用制剂。也有用于其他粘膜如直肠或阴道的霜。霜通常被认为是一种药剂产品,因为即使是用作化妆品的护肤霜也同样基于药学开发的技术,并且不作为药物使
  • 古马其顿古马其顿语(希腊语:Αρχαία μακεδονική γλώσσα)是古马其顿的语言,在公元前1000年的马其顿王国被使用,属于印欧语系。古马其顿语在公元前4世纪逐渐被希腊化
  • 尼采弗里德里希·威廉·尼采(德语:Friedrich Wilhelm Nietzsche/ˈniːtʃə/; 德语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI"
  • 生命周期产品生命周期管理(Product Lifecycle Management,简称PLM)是覆盖了从产品诞生到消亡的产品生命周期全过程的、开放的、互操作的一整套应用方案。为了使产品及时上市,打败竞争者
  • 远端转移远端转移(英语:Metastasis)也称作恶性转移,是指肿瘤细胞从原始发生的部位借由侵入循环系统,转移到身体其他部位继续生长的过程。通常良性肿瘤不会产生远端转移,而发生转移的病患预
  • 髋部在脊椎动物解剖学中,髋关节(英语:hip,拉丁语:coxa)既可指代一个解剖学区域,亦可指代一个关节。髋关节区位于臀部外前侧,髂嵴(英语:iliac crest)内侧,覆盖了股骨大转子(英语:greater trocha
  • 切罗基语切罗基语(ᏣᎳᎩ ᎦᏬᏂᎯᏍᏗ、Tsalagi Gawonihisdi),又柴罗基语,是一种切罗基人使用的易洛魁语。是唯一尚在使用的南易洛魁语。切罗基语是一种很特别的语言,它只有一个双唇音.m
  • 喃音陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧