广义线性模式

✍ dations ◷ 2025-04-02 12:40:46 #广义线性模式
在统计学上,广义线性模型 (Generalized linear model、简称GLM) 是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。此模型假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链接函数(link function)建立起可资解释其相关性的函数。John Nelder与Peter McCullagh在1989年出版,被视为广义线性模式的代表性文献中提纲挈领地说明了广义线性模式的原理、计算(如最大概似估计量)及其实务应用。广义线性模型是简单最小二乘回归(OLS)的扩展,在广义线性模式中,假设每个资料的观测值 Y {displaystyle mathbf {Y} } 来自某个指数族分布。 该分布的平均数 μ {displaystyle {boldsymbol {mu }}} 可由与该点独立的X解释:其中 E ( y ) {displaystyle E({boldsymbol {y}})} 为 y {displaystyle {boldsymbol {y}}} 的期望值, X β {displaystyle mathbf {X} {boldsymbol {beta }}} 是由未知待估计参数 β {displaystyle {boldsymbol {beta }}} 与已知变量 X {displaystyle mathbf {X} } 构成的线性估计式, g {displaystyle g} 则为链接函数。在此模式下, y {displaystyle {boldsymbol {y}}} 的方差 V {displaystyle V} 可表示为:一般假设 V {displaystyle V} 可视为一指数族随机变量的函数。未知参数 β {displaystyle {boldsymbol {beta }}} 通常会以最大概似估计量, 殆最大概似估计量, 或以贝氏方法来估计。广义线性模式包含了以下主要部分:指数族随机变量意指其具参数θ与τ的概率密度函数, f (在论离散型随机变量时,则为概率质量函数)可表为:τ称之为变异参数,通常用以解释方差。函数a、b、c、d 及h为已知。许多(不包含全部)型态的随机变量可归类为指数族θ与该随机变量的期望值有关。若a为恒等函数,则称该分布属于 正则型式。 另外,若b为恒等而τ已知,则θ称为正则参数,其与期望值的关系可表为:一般情形下,该分布的方差可表为:线性预测子是用将独立变量经由线性组合来寻模式所能提供之资讯的计量变量。符号η (希腊字母 "Η")通常用来表示线性预测子。它与资料的期望值的链接函数值有关(故称"预测子")。η表为未知参数β的线性组合(故为"线性")。X则为独立变量所组合而成的观测矩阵。如此一来,η可表示为X的元素通常为模式设计时可观测的资料或为实验时所得的数据。链接函数解释了线性预测子与分布期望值的关系。链接函数的选择可视情形而定。通常只要符合链接函数的值域有包含分布期望值的条件即可。当使用具正则参数θ的分布时,链接函数需符合XTY 为β的充份统计量此一条件。这在θ与线性预测子的链接函数值相等时方成立。下面列出若干指数族分布的典则链接函数及其反函数(有时称为均值函数):在指数分布与Gamma分布中,其典则链接函数的值域并不包含分布均值,另外其线性预测子亦可能出现负值,此两种分布绝无均值为负的可能。当进行极大似然估计进行计算时需避免上述情形出现,这时便需要使用到非典则链接函数。有些人可能会把一般线性模式和广义线性模式给弄混了。一般线性模式可视为广义线性模式的一个链接函数为恒等的特例。一般线性模式有着悠长的发展历史。广义线性模式具非恒等链接函数者有着渐近一致的结果。广义线性模式最简单的例子便是线性回归。此例中分布函数为正态分布而链接函数为恒等函数在方差已知的条件下并符合正规式。 这个例子具有广义线性模式罕有的最大概似估计量的解析解在讨论二元反应结果(如有跟没有)时,通常以二项式分布建模。其期望值'μi通常解释为样本Yi发生事件的概率p二项式分布有许多常用的链接函数,最常用的链接函数是logit:以此建模的广义线性模式通常称为logistic回归模式。另外,任何连续型概率分配累积函数(CDF)的反函数皆可使用此模式,因为其值域为,包含了二项式分布期望值的可能值域。正态概率分配累积函数 Φ {displaystyle Phi } 是一个广受应用于probit模式的选择。其链接函数为有时恒等函数也会被用为二项式分布的链接函数,其缺点为预测值可能超出合理范围。经过若干修正可以避免上述问题,但会在解释上造成困难。此模式通常适用于p接近0.5的情形。 此种建模很接近logit及probit的线性转换,有时计量经济学家会称其为Harvard模式。二元资料的广义线性模式变异函数可写为其中变异参数 τ {displaystyle tau } 通常等于1,若非,则该模式称为溢变异或殆二元。另一个常用的例子为用于计次的卜瓦松分布。此例的链接函数为自然对数,为正规链接。 方差函数与均值成等比其中变异参数 τ {displaystyle tau } 通常为1。 若非,此模式通常称为溢变异或似卜瓦松。

相关

  • 盆腔炎骨盆腔发炎(Pelvic inflammatory disease,PID)也称为盆腔炎,指的是女性子宫或输卵管受到感染的情形,有些定义也包含卵巢感染。骨盆腔发炎时常无明显的症状可能病征有下腹痛、阴道
  • 人类疱疹病毒第四型人类疱疹病毒第四型(拉丁语:Epstein-Barr virus,缩写EBV、爱泼斯坦-巴尔病毒、 human herpesvirus 4 (HHV-4)),又称为EB病毒,是最常见能引起人类疾病的病毒之一。EBV是在公元1964
  • 艾杜糖艾杜糖是一种己糖,也就是含六个碳的单糖。因为有醛基,所以也是醛糖。艾杜糖不存在于自然界中,但它的糖醛酸,也就是艾杜糖醛酸,是一种非常重要的化合物,是黏多糖——硫酸皮肤素和硫
  • 中年中年是指是年龄已越过青壮年,但尚未开始步入老年族群的人。一般会以年龄45至65周岁年纪之间的人算是中年,不过也有其他的定义。中年和青壮年会有一些不同。 中年人会对饮食、
  • 梅肯-比伯比伯县(Bibb County, Georgia)是美国乔治亚州中部的一个县。面积693平方公里。根据美国2000年人口普查,共有人口153,887人。县治梅肯 (Macon)。成立于1822年12月9日。县名纪念
  • 法语圈法语圈(法语:La francophonie)特指所有使用法语作为工作或文化传播媒介工具的国家及地区。然而,对该术语不同面向的理解有时会产生定义模糊或混淆的状况。本文把“法语圈”界定
  • 卫生学卫生学(英语:Hygiene)是指一门维护健康的学问。现代医学对不同情况下,有着不同的卫生标准。不同的文化、性别、年龄对卫生有着不同的标准。一些常见的卫生行为,会被视为是好习惯
  • 经济及社会理事会主席联合国经济及社会理事会(英语:United Nations Economic and Social Council,缩写ECOSOC )是联合国六个主要机构之一,它的任务是协助联合国大会促进国际经济和社会合作和发展。经
  • x86系列x86泛指一系列英特尔公司用于开发处理器的指令集架构,这类处理器最早为1978年面市的“Intel 8086”CPU。该系列较早期的处理器名称是以数字来表示80x86。由于以“86”作为结
  • 第二型错误第一型及第二型错误(英语:Type I error & Type II error)或型一错误及型二错误为统计学中推论统计学的名词。在假设检验中,有一种假设称为“零假设(虚无假设)”;假设检验的目的是利