广义线性模式

✍ dations ◷ 2025-11-14 08:36:34 #广义线性模式
在统计学上,广义线性模型 (Generalized linear model、简称GLM) 是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。此模型假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链接函数(link function)建立起可资解释其相关性的函数。John Nelder与Peter McCullagh在1989年出版,被视为广义线性模式的代表性文献中提纲挈领地说明了广义线性模式的原理、计算(如最大概似估计量)及其实务应用。广义线性模型是简单最小二乘回归(OLS)的扩展,在广义线性模式中,假设每个资料的观测值 Y {displaystyle mathbf {Y} } 来自某个指数族分布。 该分布的平均数 μ {displaystyle {boldsymbol {mu }}} 可由与该点独立的X解释:其中 E ( y ) {displaystyle E({boldsymbol {y}})} 为 y {displaystyle {boldsymbol {y}}} 的期望值, X β {displaystyle mathbf {X} {boldsymbol {beta }}} 是由未知待估计参数 β {displaystyle {boldsymbol {beta }}} 与已知变量 X {displaystyle mathbf {X} } 构成的线性估计式, g {displaystyle g} 则为链接函数。在此模式下, y {displaystyle {boldsymbol {y}}} 的方差 V {displaystyle V} 可表示为:一般假设 V {displaystyle V} 可视为一指数族随机变量的函数。未知参数 β {displaystyle {boldsymbol {beta }}} 通常会以最大概似估计量, 殆最大概似估计量, 或以贝氏方法来估计。广义线性模式包含了以下主要部分:指数族随机变量意指其具参数θ与τ的概率密度函数, f (在论离散型随机变量时,则为概率质量函数)可表为:τ称之为变异参数,通常用以解释方差。函数a、b、c、d 及h为已知。许多(不包含全部)型态的随机变量可归类为指数族θ与该随机变量的期望值有关。若a为恒等函数,则称该分布属于 正则型式。 另外,若b为恒等而τ已知,则θ称为正则参数,其与期望值的关系可表为:一般情形下,该分布的方差可表为:线性预测子是用将独立变量经由线性组合来寻模式所能提供之资讯的计量变量。符号η (希腊字母 "Η")通常用来表示线性预测子。它与资料的期望值的链接函数值有关(故称"预测子")。η表为未知参数β的线性组合(故为"线性")。X则为独立变量所组合而成的观测矩阵。如此一来,η可表示为X的元素通常为模式设计时可观测的资料或为实验时所得的数据。链接函数解释了线性预测子与分布期望值的关系。链接函数的选择可视情形而定。通常只要符合链接函数的值域有包含分布期望值的条件即可。当使用具正则参数θ的分布时,链接函数需符合XTY 为β的充份统计量此一条件。这在θ与线性预测子的链接函数值相等时方成立。下面列出若干指数族分布的典则链接函数及其反函数(有时称为均值函数):在指数分布与Gamma分布中,其典则链接函数的值域并不包含分布均值,另外其线性预测子亦可能出现负值,此两种分布绝无均值为负的可能。当进行极大似然估计进行计算时需避免上述情形出现,这时便需要使用到非典则链接函数。有些人可能会把一般线性模式和广义线性模式给弄混了。一般线性模式可视为广义线性模式的一个链接函数为恒等的特例。一般线性模式有着悠长的发展历史。广义线性模式具非恒等链接函数者有着渐近一致的结果。广义线性模式最简单的例子便是线性回归。此例中分布函数为正态分布而链接函数为恒等函数在方差已知的条件下并符合正规式。 这个例子具有广义线性模式罕有的最大概似估计量的解析解在讨论二元反应结果(如有跟没有)时,通常以二项式分布建模。其期望值'μi通常解释为样本Yi发生事件的概率p二项式分布有许多常用的链接函数,最常用的链接函数是logit:以此建模的广义线性模式通常称为logistic回归模式。另外,任何连续型概率分配累积函数(CDF)的反函数皆可使用此模式,因为其值域为,包含了二项式分布期望值的可能值域。正态概率分配累积函数 Φ {displaystyle Phi } 是一个广受应用于probit模式的选择。其链接函数为有时恒等函数也会被用为二项式分布的链接函数,其缺点为预测值可能超出合理范围。经过若干修正可以避免上述问题,但会在解释上造成困难。此模式通常适用于p接近0.5的情形。 此种建模很接近logit及probit的线性转换,有时计量经济学家会称其为Harvard模式。二元资料的广义线性模式变异函数可写为其中变异参数 τ {displaystyle tau } 通常等于1,若非,则该模式称为溢变异或殆二元。另一个常用的例子为用于计次的卜瓦松分布。此例的链接函数为自然对数,为正规链接。 方差函数与均值成等比其中变异参数 τ {displaystyle tau } 通常为1。 若非,此模式通常称为溢变异或似卜瓦松。

相关

  • 礼来公司礼来公司(英语:Eli Lilly and Company)是源自美国的跨国制药公司,总部位于印第安纳波利斯。礼来公司还在波多黎各及17个其他国家设有办公机构,其产品销往约125个国家。1876年由药
  • 奇恒之腑脏腑,是中医对内脏的总称,通称五脏六腑。根据《素问‧五脏别论篇》,“脏”指的是人体内的五脏,即:肝、心、脾、肺、肾(加上心包即为六脏),主要功能为生化和蓄存精气;以及六腑,即:胆、小
  • 朱利叶斯·瓦格纳-尧雷格朱利叶斯·瓦格纳-尧雷格(Julius Wagner Ritter von Jauregg,奥地利在1919年废除Ritter头衔,之后他的名字变成Julius Wagner-Jauregg,1857年3月7日-1940年9月27日),奥地利医学家。
  • 无定形体无定形体,或称无定形体、无定形形固体,是其中的原子不按照一定空间顺序排列的固体,与晶体相对应。常见的无定形体包括玻璃和很多高分子化合物如聚苯乙烯等。只要冷却速度足够快
  • 参议院议长美国副总统(英语:Vice President of the United States,非正式简称:VP / veep)是美国联邦政府行政分支中位阶第二高的官员,仅次于美国总统;同时在美国总统继任顺序中排列第一。同
  • 哈金斯查尔斯·布兰顿·哈金斯(英语:Charles Brenton Huggins,1901年9月22日-1997年1月12日),出生于加拿大哈利法克斯的美国医学家与生理学家,主要研究前列腺癌。他发展以赫尔蒙控制癌细
  • 葡萄糖酸钙葡萄糖酸钙(英语:Calcium gluconate)是葡萄糖酸的钙盐,主要在临床上用于钙质的补充。生产中一般用葡萄糖酸与石灰或碳酸钙中和而成。葡萄糖酸钙常作为保健品的成分用于补钙。临
  • 易卜拉欣易卜拉欣(亚伯拉罕)(阿拉伯语:ابراهيم‎)是伊斯兰教的先知。中文又译“伊布拉欣”或“伊卜拉欣”,均系阿拉伯语音译。易卜拉欣是阿宰尔的儿子、先知易斯马仪(以实玛利)的父亲
  • 普密蓬·阿杜德普密蓬·阿杜德(泰语:ภูมิพลอดุลยเดช;皇家音译:Phumiphon Adunyadet;发音: 聆听;1927年12月5日-2016年10月13日),亦称普密蓬大帝,泰国却克里王朝第九代国王,亦称拉玛九世
  • Nasub2/subMoOsub4/sub钼酸钠是钠的钼酸盐,化学式Na2MoO4,为白色菱形结晶体。通过钼精矿氧化焙烧生成三氧化钼,用液碱浸取生成钼酸钠溶液,后经抽滤、浓缩、冷却、离心、干燥后可制得。钼酸钠可溶于水,