首页 >
广义线性模式
✍ dations ◷ 2025-09-17 11:31:19 #广义线性模式
在统计学上,广义线性模型 (Generalized linear model、简称GLM) 是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。此模型假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链接函数(link function)建立起可资解释其相关性的函数。John Nelder与Peter McCullagh在1989年出版,被视为广义线性模式的代表性文献中提纲挈领地说明了广义线性模式的原理、计算(如最大概似估计量)及其实务应用。广义线性模型是简单最小二乘回归(OLS)的扩展,在广义线性模式中,假设每个资料的观测值
Y
{displaystyle mathbf {Y} }
来自某个指数族分布。 该分布的平均数
μ
{displaystyle {boldsymbol {mu }}}
可由与该点独立的X解释:其中
E
(
y
)
{displaystyle E({boldsymbol {y}})}
为
y
{displaystyle {boldsymbol {y}}}
的期望值,
X
β
{displaystyle mathbf {X} {boldsymbol {beta }}}
是由未知待估计参数
β
{displaystyle {boldsymbol {beta }}}
与已知变量
X
{displaystyle mathbf {X} }
构成的线性估计式,
g
{displaystyle g}
则为链接函数。在此模式下,
y
{displaystyle {boldsymbol {y}}}
的方差
V
{displaystyle V}
可表示为:一般假设
V
{displaystyle V}
可视为一指数族随机变量的函数。未知参数
β
{displaystyle {boldsymbol {beta }}}
通常会以最大概似估计量, 殆最大概似估计量, 或以贝氏方法来估计。广义线性模式包含了以下主要部分:指数族随机变量意指其具参数θ与τ的概率密度函数, f (在论离散型随机变量时,则为概率质量函数)可表为:τ称之为变异参数,通常用以解释方差。函数a、b、c、d 及h为已知。许多(不包含全部)型态的随机变量可归类为指数族θ与该随机变量的期望值有关。若a为恒等函数,则称该分布属于 正则型式。 另外,若b为恒等而τ已知,则θ称为正则参数,其与期望值的关系可表为:一般情形下,该分布的方差可表为:线性预测子是用将独立变量经由线性组合来寻模式所能提供之资讯的计量变量。符号η (希腊字母 "Η")通常用来表示线性预测子。它与资料的期望值的链接函数值有关(故称"预测子")。η表为未知参数β的线性组合(故为"线性")。X则为独立变量所组合而成的观测矩阵。如此一来,η可表示为X的元素通常为模式设计时可观测的资料或为实验时所得的数据。链接函数解释了线性预测子与分布期望值的关系。链接函数的选择可视情形而定。通常只要符合链接函数的值域有包含分布期望值的条件即可。当使用具正则参数θ的分布时,链接函数需符合XTY 为β的充份统计量此一条件。这在θ与线性预测子的链接函数值相等时方成立。下面列出若干指数族分布的典则链接函数及其反函数(有时称为均值函数):在指数分布与Gamma分布中,其典则链接函数的值域并不包含分布均值,另外其线性预测子亦可能出现负值,此两种分布绝无均值为负的可能。当进行极大似然估计进行计算时需避免上述情形出现,这时便需要使用到非典则链接函数。有些人可能会把一般线性模式和广义线性模式给弄混了。一般线性模式可视为广义线性模式的一个链接函数为恒等的特例。一般线性模式有着悠长的发展历史。广义线性模式具非恒等链接函数者有着渐近一致的结果。广义线性模式最简单的例子便是线性回归。此例中分布函数为正态分布而链接函数为恒等函数在方差已知的条件下并符合正规式。
这个例子具有广义线性模式罕有的最大概似估计量的解析解在讨论二元反应结果(如有跟没有)时,通常以二项式分布建模。其期望值'μi通常解释为样本Yi发生事件的概率p二项式分布有许多常用的链接函数,最常用的链接函数是logit:以此建模的广义线性模式通常称为logistic回归模式。另外,任何连续型概率分配累积函数(CDF)的反函数皆可使用此模式,因为其值域为,包含了二项式分布期望值的可能值域。正态概率分配累积函数
Φ
{displaystyle Phi }
是一个广受应用于probit模式的选择。其链接函数为有时恒等函数也会被用为二项式分布的链接函数,其缺点为预测值可能超出合理范围。经过若干修正可以避免上述问题,但会在解释上造成困难。此模式通常适用于p接近0.5的情形。 此种建模很接近logit及probit的线性转换,有时计量经济学家会称其为Harvard模式。二元资料的广义线性模式变异函数可写为其中变异参数
τ
{displaystyle tau }
通常等于1,若非,则该模式称为溢变异或殆二元。另一个常用的例子为用于计次的卜瓦松分布。此例的链接函数为自然对数,为正规链接。
方差函数与均值成等比其中变异参数
τ
{displaystyle tau }
通常为1。 若非,此模式通常称为溢变异或似卜瓦松。
相关
- 最小抑菌浓度最小抑菌浓度(英文:minimum inhibitory concentration:MIC)是指经过一夜的培养后,能使细菌的发育受到阻滞并被观察到的抗细菌药的最小浓度。MIC在诊断实验室里是抗细菌药对细菌
- 自由大宪章《大宪章》(拉丁语:Magna Carta,英语:The Great Charter),又称作《自由大宪章》(拉丁语:Magna Carta Libertatum;英语:The Great Charter of the Liberties)是英格兰国王约翰最初于1215
- 中古英语中古英语是指1066年到1489年间所使用的英语。这个时期的英语和古英语相比,在读音和拼写,词汇和语法方面都产生了较大的变化。一大部分古英语词汇被淘汰,转而吸收了很多法语和拉
- 微颚动物门微颚动物门(学名:Micrognathozoa)是1994年发现的一个动物门。目前只有一种动物淡水颚虫(Limnognathia maerski),由丹麦科学家在格陵兰北部的迪斯科岛地区的泉水里首次发现。它被归
- Acsub2/subSsub3/sub硫化锕是一种无机化合物,化学式为Ac2S3,有放射性。硫化锕可由氧化锕或氢氧化锕在高温(1400℃)下和H2S与CS2的混合物反应得到。硫化锕可溶于稀酸。
- 鱼露鱼露,原名
- 跨膜运输跨膜运输(membrane transport)是细胞生物学中,细胞控制像离子或是小分子的溶质通过生物膜(由磷脂双分子层及蛋白质组成)的许多机制。跨膜运输的调节是透过选择性渗透的机制(生物膜
- 夏威夷领地夏威夷领地(英语:Territory of Hawaii,夏威夷语:Panalāʻau o Hawaiʻi),又译夏威夷领土、夏威夷准州,是美国兼并夏威夷共和国之后在夏威夷设立的一个合并建制领土。1959年8月21日
- 胡正明胡正明(1947年7月12日-),北京出生的台湾人,籍贯江苏金坛,美籍华裔微电子学家,柏克莱加州大学教授,原台积电技术首席执行官。胡正明于1947年出生于北京,后前往台湾,1968年毕业于国立台
- 哈桑·鲁哈尼哈桑·鲁哈尼(波斯语:حسن روحانی,1948年11月12日-),伊朗政治家、外交家,曾担任伊朗首席核谈判代表。母语为波斯语。在2013年6月14日的2013年伊朗总统选举中当选伊朗总