正则形式的博弈

✍ dations ◷ 2025-11-23 07:34:14 #正则形式的博弈

在博弈论中,正则形式(Normal-form game)是描述博弈的一种方式。与延展形式不同,正则形式不用图形来描述博弈,而是用矩阵来陈述博弈。与延展形式的表述方式相比,这种方式在识别出严格优势策略和纳什均衡上更有用,但会丢失某些信息。博弈的正则形式的表述方式包括如下部分:每个参与者所有显然的和可能的策略,以及和与其相对应的收益。

在非完美信息的完全静态博弈中,正则形式的表述方式详细地说明了参与者策略空间和收益函数。策略空间是某个参与者的所有可能策略的集合。策略是参与者在博弈的每个阶段——不管在博弈中这个阶段实际上是否会出现——将要采取的行动的完整计划。每个参与者的收益函数,是从参与者策略空间的向量积到该参与者收益集合(一般是实数集,数字表示基数效用或序数效用——在正则形式的表述方式中常常是基数效用)的映射。也就是说,参与者的收益函数把策略组合(所有参与者策略的清单)作为它的输入量,然后输出参与者的收益。

有种博弈是参与者同时(或至少在做出行动前不观察其他参与者的动作)做出行动,并按照上述已做出行动的组合获得收益。右边的矩阵是这种博弈得正则形式的表述方式。例如,如果甲做出行动“顶”,而乙做出行动“左”,则甲得到收收益4,乙得到收益3。在每个回合,第一个数字代表排参与者(此处为甲)的收益,第二个数字代表列参与者(此处为乙)的收益。

对称博弈(其收益不是依赖于参与者选择的动作)常常被表述为只有一种收益,即竖排参与者的收益。例如,左右两边的收益矩阵表述的是同一个博弈。

收益矩阵有助于剔除劣势策略,而且经常被用于说明这个概念。例如,在囚徒困境中(右图),参与者会发现因为其他人的,成了严格劣势策略。参与者会比较每列的第一个数字,在这个例子中,3>2且1>0。这表明无论横排参与者怎样选择,竖排参与者选择都比较好些。类似地,参与者会比较每列的第二个数字,同样也是3>2且1>0。这说明无论竖排参与者怎么做,横排参与者选择都比较好些。这就证明了此博弈唯一的纳什均衡是(,)。

这些矩阵只表述同时(或者更一般地,信息是不完美的)做出行动的博弈。上述矩阵不能表述甲先做出行动,被乙观察到,然后乙再做出行动的博弈。因为在这个例子中,无法确定乙每次的策略。为了表述这种连续博弈,我们要列出乙在博弈进行期间所有的行动——尽管根据实际情况,某种行动决不会出现。和前面一样,在这个博弈中乙有两种选择,和。与前面不一样的是,视甲的行动不同而定,乙有四种策略。这些策略是:

右图是这个博弈的正则形式的表述方式。

为了用把博弈表述成正则形式,需要提供下列数据:

S k = { 1 , 2 , , n k } . {\displaystyle S_{k}=\{1,2,\ldots ,n_{k}\}.} 元组

σ = ( σ 1 , σ 2 , , σ m ) {\displaystyle {\vec {\sigma }}=(\sigma _{1},\sigma _{2},\ldots ,\sigma _{m})} = {1, 2, ..., }中对每个参与者详细说明。

定义:一个正则形式的博弈的结构形如

( P , S , F ) {\displaystyle (P,\mathbf {S} ,\mathbf {F} )} = {1,2, ...,}是参与者集合,

S = ( S 1 , S 2 , , S m ) {\displaystyle \mathbf {S} =(S_{1},S_{2},\ldots ,S_{m})} 元组。

没有理由在前面的讨论中,把参与者数量有限或每个参与者的策略有限的博弈排除在外。因为要用到泛函分析的技巧,关于有限博弈的研究非常艰深。

相关

  • 沙门氏菌感染症沙门氏菌感染症(英语:Salmonellosis),又称沙门氏杆菌病,由沙门氏菌属细菌感染所造成的疾病通称。在感染沙门氏菌之后的12至72小时内,患者通常会出现腹泻,发烧,呕吐与腹痛的症状。这
  • 光养生物光养生物(英语:Phototrophs)是捕捉光子来获取能量的生物。它们利用光中携带的能量来完成一系列的细胞新陈代谢过程。许多人误会光养生物必须通过光合作用来生存。许多光养生物(
  • 心脏压力测试心脏压力测试(英语:Cardiac stress test)也称为心脏诊断测试(英语:Cardiac diagnostic test)或心肺运动测试(英语:Cardiopulmonary exercise test),是有关心脏病学的测试,是在受控的临
  • 确认死亡《确认死亡》(英语:Confirmed Dead)美国电视剧《迷失》第4季的第2集,也是全剧的第74集,于2008年2月7日通过美国广播公司在美国首播,还通过CTV电视网在加拿大首播。从本集开始,节目
  • 核果核果(Drupe)是果实的一种类型,属于单果,由一个心皮发育而成的肉质果;一般内果皮木质化形成核;常见于蔷薇科、鼠李科等类群植物中。许多果实为核果的植物都被人类作为水果食用,包括
  • 蛾蚋科蛾蚋科(学名:Psychodidae)属长角亚目,又称蛾蠓科、毛蠓科,俗称蛾蝇、蝶蝇、蛾蚋、又或从英语直译作坑渠乌蝇,是一种小的双翅目昆虫,多毛的身体和翅膀给它们一个毛茸茸的外观。现时
  • 源实朝源实朝(1192年9月17日-1219年2月13日),日本镰仓幕府第三代征夷大将军。生于建久3年8月9日,殁于建保7年1月27日,幼名千幡,是第一代将军源赖朝的儿子,母亲是北条政子,妻子是西八条禅尼
  • 真情流露真情流露可以指:
  • 沙维什县沙维什县(英语:Chaves County, New Mexico)是美国新墨西哥州东南部的一个县,面积15,734平方公里。根据2010年人口普查,沙维什县共有人口61,382人。沙维什县的县治为罗斯威尔,而罗
  • 贵定县贵定县是中华人民共和国贵州省黔南布依族苗族自治州下属的一个县。面积1631平方公里,2012年人口30万。邮政编码551300,县政府驻:宝山街道。唐玄宗天宝元年(公元742年),改黔中都督