正则形式的博弈

✍ dations ◷ 2025-11-25 12:13:14 #正则形式的博弈

在博弈论中,正则形式(Normal-form game)是描述博弈的一种方式。与延展形式不同,正则形式不用图形来描述博弈,而是用矩阵来陈述博弈。与延展形式的表述方式相比,这种方式在识别出严格优势策略和纳什均衡上更有用,但会丢失某些信息。博弈的正则形式的表述方式包括如下部分:每个参与者所有显然的和可能的策略,以及和与其相对应的收益。

在非完美信息的完全静态博弈中,正则形式的表述方式详细地说明了参与者策略空间和收益函数。策略空间是某个参与者的所有可能策略的集合。策略是参与者在博弈的每个阶段——不管在博弈中这个阶段实际上是否会出现——将要采取的行动的完整计划。每个参与者的收益函数,是从参与者策略空间的向量积到该参与者收益集合(一般是实数集,数字表示基数效用或序数效用——在正则形式的表述方式中常常是基数效用)的映射。也就是说,参与者的收益函数把策略组合(所有参与者策略的清单)作为它的输入量,然后输出参与者的收益。

有种博弈是参与者同时(或至少在做出行动前不观察其他参与者的动作)做出行动,并按照上述已做出行动的组合获得收益。右边的矩阵是这种博弈得正则形式的表述方式。例如,如果甲做出行动“顶”,而乙做出行动“左”,则甲得到收收益4,乙得到收益3。在每个回合,第一个数字代表排参与者(此处为甲)的收益,第二个数字代表列参与者(此处为乙)的收益。

对称博弈(其收益不是依赖于参与者选择的动作)常常被表述为只有一种收益,即竖排参与者的收益。例如,左右两边的收益矩阵表述的是同一个博弈。

收益矩阵有助于剔除劣势策略,而且经常被用于说明这个概念。例如,在囚徒困境中(右图),参与者会发现因为其他人的,成了严格劣势策略。参与者会比较每列的第一个数字,在这个例子中,3>2且1>0。这表明无论横排参与者怎样选择,竖排参与者选择都比较好些。类似地,参与者会比较每列的第二个数字,同样也是3>2且1>0。这说明无论竖排参与者怎么做,横排参与者选择都比较好些。这就证明了此博弈唯一的纳什均衡是(,)。

这些矩阵只表述同时(或者更一般地,信息是不完美的)做出行动的博弈。上述矩阵不能表述甲先做出行动,被乙观察到,然后乙再做出行动的博弈。因为在这个例子中,无法确定乙每次的策略。为了表述这种连续博弈,我们要列出乙在博弈进行期间所有的行动——尽管根据实际情况,某种行动决不会出现。和前面一样,在这个博弈中乙有两种选择,和。与前面不一样的是,视甲的行动不同而定,乙有四种策略。这些策略是:

右图是这个博弈的正则形式的表述方式。

为了用把博弈表述成正则形式,需要提供下列数据:

S k = { 1 , 2 , , n k } . {\displaystyle S_{k}=\{1,2,\ldots ,n_{k}\}.} 元组

σ = ( σ 1 , σ 2 , , σ m ) {\displaystyle {\vec {\sigma }}=(\sigma _{1},\sigma _{2},\ldots ,\sigma _{m})} = {1, 2, ..., }中对每个参与者详细说明。

定义:一个正则形式的博弈的结构形如

( P , S , F ) {\displaystyle (P,\mathbf {S} ,\mathbf {F} )} = {1,2, ...,}是参与者集合,

S = ( S 1 , S 2 , , S m ) {\displaystyle \mathbf {S} =(S_{1},S_{2},\ldots ,S_{m})} 元组。

没有理由在前面的讨论中,把参与者数量有限或每个参与者的策略有限的博弈排除在外。因为要用到泛函分析的技巧,关于有限博弈的研究非常艰深。

相关

  • 脱铁杆菌门脱铁杆菌门(Deferribacteres)是一类通过专性或兼性厌氧代谢获得能量的细菌,可利用多种电子受体。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 妊娠试验妊娠试验是一种测试女性是否已经受孕的试验。最早的妊娠试验是针对早孕因子(英语:GroES)(简称EPF)进行玫瑰花结抑制分析(rosette inhibition assay)。早孕因子可以在受精后48小时从
  • 链甾醇链甾醇(英语:Desmosterol,也称为24-脱氢胆甾醇)是胆固醇合成的中间产物之一,从7-脱氢链甾醇转化而来,由24-脱氢胆固醇还原酶(英语:24-dehydrocholesterol reductase)催化形成胆固醇。
  • 酒酿圆子酒酿圆子,又称酒酿丸子、酒酿汤圆、酒酿水子,云南称为白酒汤圆,是一种与醪糟同吃的汤圆。广泛流行于中国长江流域及台湾。做法是,先用糯米和好后搓成细长型的条状,再切成一厘米大
  • Basidiomycota担子菌门(学名:Basidiomycota)是一类高等真菌,构成双核亚界,包含2万多种,包括蘑菇、木耳等主要食用菌。更具体地说,担子菌门包括以下组:蘑菇,马勃,stinkhorns(鬼笔科),支架真菌(英语:Bracke
  • 塔恩-加龙省塔恩-加龙省(法文:Tarn-et-Garonne)是法国朗格多克-鲁西永-南部-比利牛斯大区所辖的省份。该省编号为82。5个海外省及大区
  • 葡属西非葡属安哥拉(Provincía Ultramarina de Angola),也被称为葡属西非,是葡萄牙殖民帝国于1575年在非洲西南沿海所占有的一块殖民地;初始葡萄牙只控制沿岸地带,至十八世纪方开始深入殖
  • 塔沃斯塔塔沃斯塔(英语:Twosret)古埃及新王国时期第十九王朝末任法老。(约公元前1191年—约公元前1189年在位),为塞提二世之妻,西普塔的继母。塞提二世去世,她与西普塔共同管理埃及。西普塔
  • 行人文化实验室行人文化实验室(Flâneur Culture Lab)是台湾的一家出版社,创立于1998年,全衔为行人股份有限公司。1998年,行人出版社成立于台北市,创立人是陈传兴。行人出版社最初只是为了出版尚
  • 王献之王献之(344年-386年),字子敬,琅邪郡临沂县(今山东省临沂市)人,王羲之第七子。官至中书令,为与族弟王珉区分,人称王大令。与其父并称为“二王”。逸事多见于“世说新语”中。王献之自幼