汉娜·诺伊曼猜想

✍ dations ◷ 2025-12-11 13:35:22 #群论

群论中,汉娜·诺伊曼猜想是关于一个自由群的两个有限生成子群的交的秩,1957年由汉娜·诺伊曼提出。2011年伊戈尔·米涅耶夫(Igor Mineyev)和乔尔·弗里德曼(Joel Friedman)各自证明了这个猜想。

设, ≤ ()是自由群()的两个非平凡有限生成子群, = ∩ 为其交,这个猜想指

其中对群,rank()为其秩,即的生成集合的最小大小。按尼尔森-施赖埃尔(Nielsen-Schreier)定理,自由群的子群也都是自由群,而自由群的秩等于任一个自由基底的大小。

这个猜想的灵感来自Howson在1954年的一条定理。他证明了一个自由群的任何两个有限生成子群的交都是有限生成的,即是有有限秩。他并证明了若和是自由群()有限生成子群,其秩分别为 ≥ 1及 ≥ 1,那么 ∩ 的秩适合

汉娜·诺伊曼在一篇1956年的论文中,改进了上限

诺伊曼在1957年的附录中,把上限改进到

她又猜想上式右边去掉因数2也成立,这就是以其命名的猜想。

相关

  • 深海带深海带(Abyssal zone)所在的区域为海洋的底部。那里有着数量庞大的底栖动物群。“Abyssal”一词由希腊字ἄβυσσος派生而来,含意是深不见底。深海带处于海洋4000米至6000
  • 激光枪雷达枪是一种小型多普勒雷达,又称测速器或测速雷达,一般被用来测量汽车的速度来检查车辆是否遵守限速规定,也被用来在体育中测量运动员或者球类的速度,一些自动门也适用雷达枪。
  • 截角三角化四面体截角三角化四面体是一种凸多面体,共有16个面,由五边形和六边形所组成,其中五边形有四种,每种有三个,并以四面体边和面之关系排列,原属于四面体顶点的部分则为六边形这是构造一个截
  • 米哈伊尔·扎卡什维利米哈伊尔·萨卡什维利(格鲁吉亚语:მიხეილ სააკაშვილი,乌克兰语:Міхеіл Саакашвілі,1967年12月21日-),格鲁吉亚和乌克兰政治家,为前任格鲁吉亚总统和
  • CHERRSEECHERRSEE(日语:チェルシー  */?),团名代表Cherry Seeds(樱花的种子),有“能绽放迷人花朵”的涵义,由韩国勇敢兄弟担任制作人。出道成员有MIYU、SAYURI、NENE、LENA、HIKARU组
  • ES64U2型电力机车西门子ES64U2型电力机车(德语:Siemens ES64U2)是西门子交通集团欧洲短跑手系列产品中的一款双电压制式机车(德语:Mehrsystemfahrzeug),其中ES为欧洲短跑手(EuroSprinter)的缩写、64代
  • 刘珈彤刘珈彤(1987年8月21日-),又名刘倩,重庆人,中华人民共和国女演员,前舞蹈演员。毕业于重庆大学美视电影学院表演专业。2005年起开始活跃于台前。刘珈彤上大学前曾多年学习专业舞蹈,并
  • 乔·查斯汀乔·L·查斯汀(英语:Joe L. Chasteen,1925年6月8日-)是一位美国共和党籍政治人物、保险业从业员和商人,生于怀俄明州普拉特县乌瓦。查斯汀曾于查尔顿州立学院(Chadron State Colleg
  • 曹振江曹振江(1994年05月08日-),是一名中华人民共和国电影导演。
  • 巴士站 (电影)《巴士站》(英语:Bus Stop)是一部1956年的美国电影,由Joshua Logan执导,Marilyn Monroe、Don Murray主演。