广义相对论的替代理论

✍ dations ◷ 2024-12-22 21:44:26 #重力理论,广义相对论

广义相对论的替代理论是与爱因斯坦广义相对论竞争,尝试要描述重力现象的物理理论。

对于建构一个理想重力理论,至今已有许多不同的尝试。这些尝试可以分为下面四个大类:

本文谈论对象仅包括与广义相对论的直接竞争理论。关于量子化重力理论课题,参见量子引力。重力与其他基本力的统一理论课题,参见经典统一场论。试图将所有目标毕其功于一役的理论,请见万有理论。

建立新的重力理论的动机随着年代不同,最早先的动机是要解释行星轨道(牛顿重力)以及更复杂的轨道(例如:拉格朗日)。再来登场的是不成功的尝试——要合并重力与波理论或微粒(corpuscular)理论的新重力理论。随着洛伦兹变换的发现,物理学的样貌彻底改变,而导致了将其与重力调和的尝试。在此同时,实验物理学家开始测试重力与相对论的基础——洛伦兹不变性、重力造成的光线偏折、Eötvös实验。这些考量导致与考验了广义相对论的发展。

c {\displaystyle c\;} 为光速, G {\displaystyle G\;} 为重力常数。几何变数(Geometric variables)在此不使用。

拉丁字母指标取值从1到3,希腊字母指标取值从0到3。采用爱因斯坦取和原则。

η μ ν {\displaystyle \eta _{\mu \nu }\;} 为闵可夫斯基度规。 g μ ν {\displaystyle g_{\mu \nu }\;} 为一张量,通常是度规张量。其有标记(signature) ( , + , + , + ) {\displaystyle (-,+,+,+)}

协变微分(Covariant differentiation)写为 μ ϕ {\displaystyle \nabla _{\mu }\phi \;} ϕ ; μ {\displaystyle \phi _{;\mu }\;}

也可考虑阅读广义相对论的数学条目。

重力理论可以粗略分为数个大类。此处描述的多数理论具有:

若一理论具有一拉格朗日密度,写作 L {\displaystyle L\,} ,则作用量 S {\displaystyle S\,} 则是此项的积分,例如: S d 4 x R g L {\displaystyle S\,\propto \,\int d^{4}xR{\sqrt {-g}}L\,}

其中 R {\displaystyle R\,} 是空间的曲率。在此方程中,通常会有 g = 1 {\displaystyle g=-1\,} 的情形,但并非必要条件。

本文中所描述的理论几乎每个都有一作用量。这是目前已知的方法来保证能量、动量与角动量守恒能自动成立;尽管如此,要建构使守恒律被违背的作用量仍相当容易。1983年原始版本的MOND并没有作用量。

一些理论有作用量但没有拉格朗日密度。一个好的例子是怀海德(1922年)的理论,此中的作用量是非局域的。

一个重力理论是一度规理论(metric theory)仅当其可以给出遵守如下两个条件的数学表述:

条件1. 存在一度规张量 g μ ν {\displaystyle g_{\mu \nu }\,} ,标记为1,而此度规掌控了原长(proper-length)与固有时(proper-time)测量,一如在狭义与广义相对论:

此式中对指标 μ {\displaystyle \mu } ν {\displaystyle \nu } 进行取和。

条件2. 受到重力作用的具应力物质与场按照下列方程反应:

其中 T {\displaystyle T\,} 为应力-能量张量,针对所有物质以及非重力的场,而 {\displaystyle \nabla } 为随度规所做的协变导数(covariant derivative)]。

任何重力理论若 g μ ν g ν μ {\displaystyle g_{\mu \nu }\neq g_{\nu \mu }} 永远成立,则其非度规理论,但任何度规理论可以给予违背条件1与2的数学描述。

度规理论包括(从简单至复杂):

诺德斯特洛姆(Nordström)、Einstein-Fokker、Whitrow-Morduch、Littlewood、Bergman、Page-Tupper, 爱因斯坦(1912年)、Whitrow-Morduch、罗森(Rosen)(1971年)、Papapetrou、倪维斗(Ni)、Yilmaz、、李-莱特曼-倪(Lee-Lightman-Ni)

罗森(1975年)、Rastall、莱特曼-李(Lightman-Lee)

怀海德(Whitehead)、Deser-Laurent、Bollini-Giambini-Tiomno

爱因斯坦广义相对论

(参见后文1980年代至今的现代理论)

非度规理论,则包括嘉当(Cartan)、Belinfante-Swihart。

关于马赫原理,在这里做一些陈述是洽当的,因为其中一些理论根据的是马赫原理,例如怀海德(1922年),and many mention it in passing eg. Einstein-Grossmann (1913), Brans-Dicke (1961). 马赫原理可以被想作是介于牛顿与爱因斯坦之间的妥协(half-way-house)。可以做如此描述:

目前为止,所有的实验证据指出马赫原理是不正确的,但其可能性尚未被完全排除。

早期重力理论——指的是广义相对论之前的理论——包括有牛顿(1686年)、爱因斯坦(1912年a & b)、爱因斯坦与格罗斯曼(Grossmann)(1913年)、诺德斯特洛姆(Nordström)(1912年、 1913年)以及爱因斯坦与佛克(Fokker)(1914年)。

在牛顿(1686年)理论中(以更近代的数学重写),质量密度 ρ {\displaystyle \rho \,} 产生了一个标量场 ϕ {\displaystyle \phi \,}


利用倒三角算符(Nabla operator) {\displaystyle \nabla } ,可以很方面地写成:

而标量场掌控了自由下落粒子的运动:

其中标量场为 ϕ = G M / r {\displaystyle \phi =GM/r\,}

理论与测试的发展是一个牵一个地进行着。多数测试可以被分类为(参见Will 2001):

(细节参见威尔(Will)(1981年)与倪维斗(Ni)(1972年)。米斯纳(Misner)等人(1973年)制表将倪氏参数记号转换成威尔的版本。)

广义相对论至今已经超过90岁,而不断继起的重力替代理论却无法与更精确的观测结果相一致。更细节的描述请见参数化后牛顿形式(Parameterized post-Newtonian formalism, PPN)。

下表列举了为数众多的理论之PPN值。如果格中的值跟行顶格子的值相同,则表示完整的的式子太复杂而无法列在此处;例如:行顶格子为β参数,而Bergmann(1968年), Wagoner(1970年)的格子值也是β。

† 此理论不完备,且 ζ 4 {\displaystyle \zeta _{4}} 可以是两值中的一者。最接近零的值在此列出。

至今所有实验测试与广义相对论相符,因此PPN分析立即删除了表中所有的标量场论。

此处未有针对怀海德(1922年)、Deser-Laurent(1968年)、Bollini-Giamiago-Tiomino(1970年)三者的完整PPN参数列表。但在这些三个情形中 β = γ {\displaystyle \beta =\gamma } ,这与广义相对论的情形以及实验结果严重违背。特别的是,这些理论预测的地球潮汐振幅是不正确的值。

相关

  • 不杀生无杀生(英语:Nonkilling)倡导人类社会不应该有杀生 ,不应该有杀生威胁,以及不该存有可助长杀生的环境。尽管在学术讨论上,无杀生主要探讨的是同人类有关的课题,但其实这个用词也可
  • 婴儿油矿物油(或石蜡油)指的是从矿物源、特别是石油分馏物中提取的任何一种无色无臭的高级烷烃。“矿物油”这个名字其实并不准确,在过去曾经被用于描述某些具体的油。“白油”、“液
  • 学院路坐标:39°59′22″N 116°21′12″E / 39.9894978°N 116.3532213°E / 39.9894978; 116.3532213学院路是北京市海淀区南北向的一条街道,因公路两侧规划了很多大学院校而得名
  • 资本资产定价模型资本资产定价模型(英语:Capital Asset Pricing Model, CAPM)是由美国学者威廉·夏普(William Sharpe)、林特尔(John Lintner)、特里诺(Jack Treynor)和莫辛(Jan Mossin)等人在现代投资
  • Mail.comMail.com是一家门户网站和基于网络的电子邮件服务提供商,由德国联合互联网公司(英语:United_Internet)拥有。它提供新闻文章和影片,并且有无限的免费储存电子邮件网站之应用程序
  • 闽 (十国)闽(闽东语:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Gentium Alternativ
  • 读写锁读写锁是计算机程序的并发控制的一种同步机制,也称“共享-互斥锁”、多读者-单写者锁。多读者锁,,“push lock”) 用于解决读写问题(英语:readers–writers problem)。读操作可并
  • 大林蒲凤林宫大林蒲凤林宫,是台湾高雄市小港区大林蒲的庙宇,主奉三府王爷和白府元帅,亦称“三王爷庙”。凤林宫的庙史可追溯自清康熙三十六年(1697年),主要奉祀唐朝三百六十进士之温府、朱府和
  • 猫狗大战2《猫狗大战2》(英语:)是2010年由布拉德·佩顿导演的一部电影,是2001年《猫狗大战》的续集,2010年7月30日首映。电影情节遭到观众极大的批评。名为“珍珠猫”(Kitty Galore)的猫开始
  • 穆罕默德·阿里汗穆罕默德·阿里汗·赞德(波斯语:محمد علي خان زند‎,1760年-1779年) 是赞德王朝第二任伊朗沙阿(1779年在位)。阿布·法特赫汗是赞德王朝第一任沙阿卡里姆汗的次子。穆