广义相对论的替代理论

✍ dations ◷ 2025-04-04 11:17:32 #重力理论,广义相对论

广义相对论的替代理论是与爱因斯坦广义相对论竞争,尝试要描述重力现象的物理理论。

对于建构一个理想重力理论,至今已有许多不同的尝试。这些尝试可以分为下面四个大类:

本文谈论对象仅包括与广义相对论的直接竞争理论。关于量子化重力理论课题,参见量子引力。重力与其他基本力的统一理论课题,参见经典统一场论。试图将所有目标毕其功于一役的理论,请见万有理论。

建立新的重力理论的动机随着年代不同,最早先的动机是要解释行星轨道(牛顿重力)以及更复杂的轨道(例如:拉格朗日)。再来登场的是不成功的尝试——要合并重力与波理论或微粒(corpuscular)理论的新重力理论。随着洛伦兹变换的发现,物理学的样貌彻底改变,而导致了将其与重力调和的尝试。在此同时,实验物理学家开始测试重力与相对论的基础——洛伦兹不变性、重力造成的光线偏折、Eötvös实验。这些考量导致与考验了广义相对论的发展。

c {\displaystyle c\;} 为光速, G {\displaystyle G\;} 为重力常数。几何变数(Geometric variables)在此不使用。

拉丁字母指标取值从1到3,希腊字母指标取值从0到3。采用爱因斯坦取和原则。

η μ ν {\displaystyle \eta _{\mu \nu }\;} 为闵可夫斯基度规。 g μ ν {\displaystyle g_{\mu \nu }\;} 为一张量,通常是度规张量。其有标记(signature) ( , + , + , + ) {\displaystyle (-,+,+,+)}

协变微分(Covariant differentiation)写为 μ ϕ {\displaystyle \nabla _{\mu }\phi \;} ϕ ; μ {\displaystyle \phi _{;\mu }\;}

也可考虑阅读广义相对论的数学条目。

重力理论可以粗略分为数个大类。此处描述的多数理论具有:

若一理论具有一拉格朗日密度,写作 L {\displaystyle L\,} ,则作用量 S {\displaystyle S\,} 则是此项的积分,例如: S d 4 x R g L {\displaystyle S\,\propto \,\int d^{4}xR{\sqrt {-g}}L\,}

其中 R {\displaystyle R\,} 是空间的曲率。在此方程中,通常会有 g = 1 {\displaystyle g=-1\,} 的情形,但并非必要条件。

本文中所描述的理论几乎每个都有一作用量。这是目前已知的方法来保证能量、动量与角动量守恒能自动成立;尽管如此,要建构使守恒律被违背的作用量仍相当容易。1983年原始版本的MOND并没有作用量。

一些理论有作用量但没有拉格朗日密度。一个好的例子是怀海德(1922年)的理论,此中的作用量是非局域的。

一个重力理论是一度规理论(metric theory)仅当其可以给出遵守如下两个条件的数学表述:

条件1. 存在一度规张量 g μ ν {\displaystyle g_{\mu \nu }\,} ,标记为1,而此度规掌控了原长(proper-length)与固有时(proper-time)测量,一如在狭义与广义相对论:

此式中对指标 μ {\displaystyle \mu } ν {\displaystyle \nu } 进行取和。

条件2. 受到重力作用的具应力物质与场按照下列方程反应:

其中 T {\displaystyle T\,} 为应力-能量张量,针对所有物质以及非重力的场,而 {\displaystyle \nabla } 为随度规所做的协变导数(covariant derivative)]。

任何重力理论若 g μ ν g ν μ {\displaystyle g_{\mu \nu }\neq g_{\nu \mu }} 永远成立,则其非度规理论,但任何度规理论可以给予违背条件1与2的数学描述。

度规理论包括(从简单至复杂):

诺德斯特洛姆(Nordström)、Einstein-Fokker、Whitrow-Morduch、Littlewood、Bergman、Page-Tupper, 爱因斯坦(1912年)、Whitrow-Morduch、罗森(Rosen)(1971年)、Papapetrou、倪维斗(Ni)、Yilmaz、、李-莱特曼-倪(Lee-Lightman-Ni)

罗森(1975年)、Rastall、莱特曼-李(Lightman-Lee)

怀海德(Whitehead)、Deser-Laurent、Bollini-Giambini-Tiomno

爱因斯坦广义相对论

(参见后文1980年代至今的现代理论)

非度规理论,则包括嘉当(Cartan)、Belinfante-Swihart。

关于马赫原理,在这里做一些陈述是洽当的,因为其中一些理论根据的是马赫原理,例如怀海德(1922年),and many mention it in passing eg. Einstein-Grossmann (1913), Brans-Dicke (1961). 马赫原理可以被想作是介于牛顿与爱因斯坦之间的妥协(half-way-house)。可以做如此描述:

目前为止,所有的实验证据指出马赫原理是不正确的,但其可能性尚未被完全排除。

早期重力理论——指的是广义相对论之前的理论——包括有牛顿(1686年)、爱因斯坦(1912年a & b)、爱因斯坦与格罗斯曼(Grossmann)(1913年)、诺德斯特洛姆(Nordström)(1912年、 1913年)以及爱因斯坦与佛克(Fokker)(1914年)。

在牛顿(1686年)理论中(以更近代的数学重写),质量密度 ρ {\displaystyle \rho \,} 产生了一个标量场 ϕ {\displaystyle \phi \,}


利用倒三角算符(Nabla operator) {\displaystyle \nabla } ,可以很方面地写成:

而标量场掌控了自由下落粒子的运动:

其中标量场为 ϕ = G M / r {\displaystyle \phi =GM/r\,}

理论与测试的发展是一个牵一个地进行着。多数测试可以被分类为(参见Will 2001):

(细节参见威尔(Will)(1981年)与倪维斗(Ni)(1972年)。米斯纳(Misner)等人(1973年)制表将倪氏参数记号转换成威尔的版本。)

广义相对论至今已经超过90岁,而不断继起的重力替代理论却无法与更精确的观测结果相一致。更细节的描述请见参数化后牛顿形式(Parameterized post-Newtonian formalism, PPN)。

下表列举了为数众多的理论之PPN值。如果格中的值跟行顶格子的值相同,则表示完整的的式子太复杂而无法列在此处;例如:行顶格子为β参数,而Bergmann(1968年), Wagoner(1970年)的格子值也是β。

† 此理论不完备,且 ζ 4 {\displaystyle \zeta _{4}} 可以是两值中的一者。最接近零的值在此列出。

至今所有实验测试与广义相对论相符,因此PPN分析立即删除了表中所有的标量场论。

此处未有针对怀海德(1922年)、Deser-Laurent(1968年)、Bollini-Giamiago-Tiomino(1970年)三者的完整PPN参数列表。但在这些三个情形中 β = γ {\displaystyle \beta =\gamma } ,这与广义相对论的情形以及实验结果严重违背。特别的是,这些理论预测的地球潮汐振幅是不正确的值。

相关

  • UnicodeUnicode(中文:万国码、国际码、统一码、单一码)是计算机科学领域里的一项业界标准。它对世界上大部分的文字系统进行了整理、编码,使得电脑可以用更为简单的方式来呈现和处理文
  • 猪圆环病毒病猪圆环病毒(Porcine circovirus,PCV)是一种单链DNA病毒(class II),无囊膜,单股环状。病毒衣壳呈20面体对称结构,直径约17 nm。猪圆环病毒属圆环病毒科圆环病毒属。猪圆环病毒是在
  • 高雄硫酸铔高雄硫酸铔,简称高硫、KASC,是台湾一家已结束经营的肥料及化工产品制造公司。
  • 清初五大师明末清初五大师是指明末清初的五大学者,他们分别是:黄宗羲、顾炎武、方以智、王夫之、朱之瑜(朱舜水)。五位学者均参加过明朝末年的抗清战争,失败后均致力于学术。其中黄宗羲、顾
  • 努光铁努光铁(노광철,1956年-),朝鲜政治家,官至朝鲜劳动党中央政治局候补委员、国务委员会委员及最高人民会议代议员。大将军衔,他被认为是一名核专家。2018年7月,出任人民武力部部长一职
  • 苏琪·里基·安迪妮苏琪·里基·安迪妮(印尼语:Suci Rizky Andini,1993年3月26日-),印尼女子羽毛球运动员。2009年,安迪妮代表印尼出战马来西亚亚罗士打举行的世界青年羽毛球锦标赛,与蒂亚拉·罗萨莉娅
  • 震中距震中距(英语:epicentral distance),是指震中至某一指定点的地面距离。一般地,规模相等的地震,震中距越小,地震造成的破坏越重。反之,随着震中距的增加,地震造成的破坏逐渐减轻。由于
  • 猕猴桃科猕猴桃科包括3属大约360种,分布在亚洲、中美洲和南美洲的温带和亚热带地区,有乔木、灌木和木质藤本。本科植物多数为小乔木或灌木,单叶螺旋排列,叶缘有齿,无托叶或多托叶,一般都有
  • 伊朗科学研究与技术部伊朗政府与政治 系列条目伊朗科学研究与技术部是伊朗伊斯兰共和国负责科学、研究及技术的政府部门。国营的伊朗大学由科学研究与技术部直接监管。坐标:35°45′42.30″N 51°
  • 异形大战铁血战士《异形大战铁血战士》(英语:,缩写:)是于2004年上映的美国科幻电影,由保罗·W·S·安德森执导并编剧,20世纪福克斯发行,主要演员包括桑娜·莱瑟、兰斯·亨利克森、雷欧·波瓦、艾文·