已测序的生物

✍ dations ◷ 2024-11-05 16:27:30 #已测序的生物
已测序的生物指其基因组已经被完全测序的生物。其中部分生物的DNA序列已经被完全注释,功能性的片段(如基因等)已作图。借助于基因组研究及高通量处理等技术,越来越多的生物的全部基因被人们获得。自从1995年以来已经有150个基因组被解密,将近每个星期有新的物种添加进来。下表是目前为止已经被相当完全测序的生物。Sesamum indicum L. Sesame芝麻(2n = 26) 293.7 Mb, 10,656 orfs 1Oryza brachyantha短药野生稻 261 Mb, 32,038 orfs 2Chondrus crispus Red seaweed爱尔兰海藻 105 Mb, 9,606 orfs 3Pyropia yezoensis susabi-nori海苔 43 Mb, 10,327 orfs 4Prunus persica Peach桃 226.6 of 265 Mb 27,852 orfs 5Aegilops tauschii山羊草(DD) 4.23 Gb (97% of the 4.36), 43,150 orfs 6Triticum urartu乌拉尔图小麦(AA) 4.66 Gb (94.3 % of 4.94 Gb, 34,879 orfs 7moso bamboo (Phyllostachys heterocycla)毛竹 2.05 Gb (95%) 31,987 orfs 8Cicer arietinum Chickpea 鹰嘴豆 ~738-Mb,28,269 orfs 9 520 Mb (70% of 740 Mb), 27,571 orfs 10Prunus mume梅 280 Mb, 31,390 orfs 11Gossypium hirsutum L.陆地棉 2.425 Gb 12Gossypium hirsutum L.雷蒙德氏棉 761.8 Mb 13Citrus sinensis甜橙 87.3% of ~367 Mb, 29,445 orfs 14甜橙 367 Mb 15Citrullus lanatus watermelon西瓜 353.5 of ~425 Mb (83.2%) 23,440 orfs 16Betula nana dwarf birch,矮桦 450 Mb 17Nannochloropsis oceanica CCMP1779微绿球藻(产油藻类之一) 28.7 Mb,11,973 orfs 18Triticum aestivum bread wheat普通小麦 17 Gb, 94,000 and 96,000 orfs 19Hordeum vulgare L. barley大麦 1.13 Gb of 5.1 Gb,26,159 high confidence orfs,53,000 low confidence orfs 20Gossypium raimondii cotton雷蒙德氏棉 D subgenome,88% of 880 Mb 40,976 orfs 21Linum usitatissimum flax亚麻 302 mb (81%), 43,384 orfs 22Musa acuminata banana香蕉 472.2 of 523 Mb, 36,542 orfs 23Cucumis melo L. melon甜瓜 375 Mb(83.3%)27,427 orfs 24Pyrus bretschneideri Rehd. cv. Dangshansuli梨(砀山酥梨) 512.0 Mb (97.1%), 42,812 orfs 25,26Solanum lycopersicum番茄 760/900 Mb,34727 orfs 27S. pimpinellifolium LA1589野生番茄 739 MbSetaria狗尾草属(谷子、青狗尾草) 400 Mb,25000-29000 orfs 28,29Cajanus cajan pigeonpea木豆 833 Mb,48,680 orfs 30Nannochloropis gaditana一种海藻 ~29 Mb, 9,052 orfs 31Medicago truncatula蒺藜苜蓿 350.2 Mb, 62,388 orfs 32Brassica rapa白菜 485 Mb 33Solanum tuberosum马铃薯(DM) 725 Mb,39031 orfs 34Thellungiella parvula条叶蓝芥 13.08 Mb 29,338 orfs 35Arabidopsis lyrata lyrata玉山筷子芥? 183.7 Mb, 32670 orfs 36Fragaria vesca野草莓 240 Mb,34,809 orfs 37Theobroma cacao可可 76% of 430 Mb, 28,798 orfs 38Aureococcus anophagefferens褐潮藻 32 Mb, 11501 orfs 39Selaginella moellendorfii江南卷柏 208.5 Mb, 34782 orfs 40Jatropha curcas Palawan麻疯树 285.9 Mb, 40929 orfs 41Oryza glaberrima光稃稻(非洲栽培稻) 206.3 Mb (0.6x), 10 080 orfs(>70% coverage) 42Phoenix dactylifera棕枣 380 Mb of 658 Mb, 25,059 orfs 43Chlorella sp. NC64A小球藻属 40000 Kb, 9791 orfs 44Ricinus communis蓖麻 325 Mb, 31,237 orfs 45Malus domestica (Malus x domestica) 苹果 742.3 Mb 46Volvox carteri f. nagariensis 69-1b 一种团藻 120 Mb, 14437 orfs 47Brachypodium distachyon 短柄草 272 Mb,25,532 orfs 48Glycine max cultivar Williams 82栽培大豆 1.1 Gb, 46430 orfs 49Zea mays ssp. Mays Zea mays ssp. Parviglumis Zea mays ssp. Mexicana Tripsacum dactyloides var. meridionale 无法下载附表 50Zea mays mays cv. B73玉米 2.06 Gb, 106046 orfs 51Cucumis sativus 9930黄瓜 243.5 Mb, 63312 orfs 52Micromonas pusilla金藻 21.7 Mb, 10248 orfs 53Sorghum bicolor高粱 697.6 Mb, 32886 orfs 54Phaeodactylum tricornutum三角褐指藻 24.6 Mb, 9479 orfs 55Carica papaya L. papaya番木瓜 271 Mb (75%), 28,629 orfs 56Physcomitrella patens patens小立碗藓 454 Mb, 35805 orfs 57Vitis vinifera L. Pinot Noir, clone ENTAV 115 葡萄 504.6 Mb, 29585 orfs 58Vitis vinifera PN40024 葡萄 475 Mb 59Ostreococcus lucimarinus 绿色鞭毛藻 13.2 Mb, 7640 orfs 60Chlamydomonas reinhardtii 莱茵衣藻 100 Mb, 15256 orfs 61Populus trichocarpa 黑三角叶杨 550 Mb, 45000 orfs 62Ostreococcus tauri 绿藻 12.6 Mb, 7892 orfs 63Oryza sativa ssp. japonica 粳稻 360.8 Mb, 37544 orfs 64Thalassiosira pseudonana硅藻 25 Mb, 11242 orfs 65Cyanidioschyzon merolae 10D红藻 16.5 Mb, 5331 orfs 66Oryza sativa ssp. japonica粳稻 420 Mb, 50000 orfs 67Oryza sativa L. ssp. Indica籼稻 420 Mb, 59855 orfs 68Guillardia theta 蓝隐藻 551 Kb, 553 orfs 69Arabidopsis thaliana Columbia 拟南芥 119.7 Mb, 31392 orfs 701 Zhang, H. et al. Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biology 14, 401 (2013).2 Chen, J. et al. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 1595 (2013).3 Collén, J. et al. Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences 110, 5247-5252 (2013).4 Nakamura, Y. et al. The first symbiont-free genome sequence of marine red alga, susabi-nori Pyropia yezoensis. PLoS ONE 8, e57122 (2013).5 Verde, I. et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics advance online publication (2013).6 Jia, J. et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496, 91-95 (2013).7 Ling, H.-Q. et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496, 87-90 (2013).8 Peng, Z. et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nature Genetics 45, 456-461 (2013).9 Jain, M. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant Journal, DOI: 10.1111/tpj.12173 (2013).10 Varshney, R. K. et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotech 31, 240-246 (2013).11 Zhang, Q. et al. The genome of Prunus mume. Nat Commun 3, 1318 (2012).12 Lee, M.-K. et al. Construction of a plant-transformation-competent BIBAC library and genome sequence analysis of polyploid Upland cotton (Gossypium hirsutum L.). BMC Genomics 14, 208 (2013).13 Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423-427 (2012).14 Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nat Genet 45, 59–66 (2013).15 Belknap, W. R. et al. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 54, 1005-1015 (2011).16 Guo, S. et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45, 51–58 (2013).17 Wang, N. et al. Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers. Mol Ecol Article first published online: 21 NOV 2012 DOI: 10.1111/mec.12131 (2012).18 Vieler, A. et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8, e1003064 (2012).19 Brenchley, R. et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491, 705-710 (2012).20 Consortium, T. I. B. G. S. A physical, genetic and functional sequence assembly of the barley genome. Nature 491, 711–716 (2012).21 Wang, K. et al. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44, 1098–1103 (2012).22 Wang, Z. et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. The Plant Journal 72, 461-473 (2012).23 D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).24 Garcia-Mas, J. et al. The genome of melon (Cucumis melo L.). PNAS 109, 11872-11877 (2012).25 reporter, A. G. s. Consortium releases pear genome data. GenomeWeb Daily News (2012).26 Wu, J. et al. The genome of pear (Pyrus bretschneideri Rehd.). Genome Res.Published in Advance November 13, 2012, doi:10.1101/gr.144311.112 (2012).27 Consortium, T. T. G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).28 Bennetzen, J. L. et al. Reference genome sequence of the model plant Setaria. Nat Biotech 30, 555-561 (2012).29 Zhang, G. et al. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotech 30, 549-554 (2012).30 Varshney, R. K. et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotech 30, 83-89 (2012).31 Radakovits, R. et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3, 686 (2012).32 Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).33 Wang, X. et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43, 1035-1039 (2011).34 Consortium, T. P. G. S. Genome sequence and analysis of the tuber crop potato. Nature 475, 189-195 (2011).35 Dassanayake, M. et al. The genome of the extremophile crucifer Thellungiella parvula. Nat. Genet. 43, 913-918 (2011).36 Hu, T. T. et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet. 43, 476-481 (2011).37 Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109-116 (2011).38 Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101-108 (2011).39 Gobler, C. J. et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. PNAS 108, 4352-4357 (2011).40 Banks, J. A. et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960-963 (2011).41 Sato, S. et al. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res. 18, 65-76 (2011).42 Sakai, H. et al. Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant Journal 66, 796-805 (2011).43 Al-Dous, E. K. et al. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29, 521-527 (2011).44 Blanc, G. et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22, 2943-2955 (2010).45 Chan, A. P. et al. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotech 28(951-956 (2010).46 Velasco, R. et al. The genome of the domesticated apple (Malus x domestica Borkh.). Nat. Genet. 42, 833-839 (2010).47 Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223-226 (2010).48 Initiative, T. I. B. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463, 763-768 (2010).49 Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183 (2010).50 Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808-811 (2012).51 Wei, F. et al. The physical and genetic framework of the maize B73 genome. PLoS Genet 5, e1000715 (2009).52 Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275-1281 (2009).53 Worden, A. Z. et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324, 268-272 (2009).54 Paterson, A. H. et al. The Sorghum bicolor genome and the diversification of grasses. Nature 457, 551-556 (2009).55 Bowler, C. et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 (2008).56 Ming, R. et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991-996 (2008).57 Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 (2008).58 Velasco, R. et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2, e1326 (2007).59 Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463-467 (2007).60 Palenik, B. et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710 (2007).61 Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250 (2007).62 Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 (2006).63 Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. PNAS 103, 11647-11652 (2006).64 Project, I. R. G. S. The map-based sequence of the rice genome. Nature 436, 793-800 (2005).65 Armbrust, E. V. et al. The genome of the diatom Thalassiosira Pseudonana: ecology, evolution, and metabolism. Science 306, 79-86 (2004).66 Matsuzaki, M. et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657 (2004).67 Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92-100 (2002).68 Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 (2002).69 Douglas, S. et al. The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096 (2001).70 Kaul, S. et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 (2000).

相关

  • 恋尸癖恋尸,是个人对尸体表现爱恋或性吸引的现象。美国精神医学学会在《精神疾病诊断与统计手册》中把恋尸列为“性欲倒错”。但是恋尸行为的含意显然颇为多样。研究者在访谈恋尸者
  • 阳极阳极(英语:Anode)是发生氧化反应的电极。相对的,阴极(英语:Cathode)是发生还原反应的电极。英文anode和cathode是法拉第发明的词,anode表示“发生氧化反应的电极”(或者失去电子的电
  • 双糖双糖(英语:Disaccharide,亦称为二糖)是由两个单糖分子经缩合反应除去一个水分子而成的一种碳水化合物。双糖和单糖一样可溶于水。常见的双糖为蔗糖、乳糖、麦芽糖。蔗糖是由葡萄
  • 二元论二元论(dualism)是一个多义词。本体论上的二元论,与一元论对应,二元论认为世界由两种不可缺少且相互独立的元素组成,而一元论认为世界的本原是唯一的。本体论的一元论者认为无论
  • 国家突发公共事件应急响应机制国家突发公共事件应急响应机制,是根据中华人民共和国国务院制订的《国家突发公共事件总体应急预案》所采取的全国性应急预案体系,其目的是提高政府保障公共安全和处置突发公共
  • 谬论谬误与谬论是不恰当的推理,一般而言谬误指不当的推理思路,而谬论指不当的推理言论,可能是说者有不当思路,或说者无不当思路,但意图使听者产生不当思路或其言论明显容易误导听者产
  • 胶子在粒子物理学中,胶子(gluon)是负责在两个夸克之间传递强作用力的基本粒子,类似光子负责在两个带电粒子之间传递电磁力一般。用科学术语来说明,胶子是量子色动力学用来在两个夸克
  • 瓦特瓦特(符号:W)是国际单位制的功率单位。瓦特的定义是1焦耳/秒(1 J/s),即每秒钟转换,使用或耗散的(以安培为量度的)能量的速率。日常生活中更常用千瓦作为单位,1千瓦=1000瓦特,千瓦又可合
  • 下目亚目(suborder)是生物分类法中的一级,一般是界于目和科之间,但有时亚目和科之间会再分下目(又译作次目)。亚目的拉丁文名称较无固定的字尾。下目(infra-order),又译作次目是生物分类
  • 焦炭焦炭是一种低杂质的高碳含量燃料,一般为煤炭破坏蒸馏(英语:Destructive distillation)或焦煤干馏后残存的固态产物。形态呈不规则块状,富含大小不等的气孔结构,质地坚硬,颜色为银灰