欧拉方程 (流体动力学)

✍ dations ◷ 2025-10-24 21:33:12 #基本物理概念,流体力学中的方程

在流体动力学中,欧拉方程是一组支配无黏性流体运动的方程,以莱昂哈德·欧拉命名。方程组各方程分别代表质量守恒(连续性)、动量守恒及能量守恒,对应零黏性及无热传导项的纳维-斯托克斯方程。历史上,只有连续性及动量方程是由欧拉所推导的。然而,流体动力学的文献常把全组方程——包括能量方程——称为“欧拉方程”。

跟纳维-斯托克斯方程一样,欧拉方程一般有两种写法:“守恒形式”及“非守恒形式”。守恒形式强调物理解释,即方程是通过一空间中某固定体积的守恒定律;而非守恒形式则强调该体积跟流体运动时的变化状态。

欧拉方程可被用于可压缩性流体,同时也可被用于非压缩性流体——这时应使用适当的状态方程,或假设流速的散度为零。

本条目假设经典力学适用;当可压缩流的速度接近光速时,详见相对论性欧拉方程。

第一份印有欧拉方程的出版物是欧拉的论文《流体运动的一般原理》(Principes généraux du mouvement des fluides),发表于1757年,刊载于《柏林科学院论文集》(Mémoires de l'Academie des Sciences de Berlin)。它们是最早被写下来的一批偏微分方程。在欧拉发表他的研究之时,方程组只有动量方程及连续性方程,因此只能完整描述非压缩性流体;在描述可压缩性流体时,会因条件不足而不能提供唯一解。在1816年,皮埃尔-西蒙·拉普拉斯添加了一条方程,第三条方程后来被称为绝热条件。

在十九世纪的后半期,科学家们发现,与能量守恒相关的方程在任何时间都得被遵守,而绝热条件则只会在有平滑解的情况下会被遵守,因为该条件是由平滑解时的基础定律所造成的后果。在发现了狭义相对论之后,能量密度、质量密度及应力这三个概念,被统一成应力-能量张量这一个概念;而能量及动量也同样被统一成一个概念——能量-动量张量。

以下是用微分形式写成的欧拉方程:

其中

第二条方程包含了一并矢积的散度,用下标标记(每一个j代表从1至3)表示会较易明白:

其中i及j下标各代表直角坐标系的三个分量:及。

注意以上方程是用守恒形式的,而守恒形式强调的是方程的物理起因(因此在计算流体力学中的电脑模拟上使用这种形式最方便)。而代表动量守恒的第二条方程可用非守恒形式表示:

但是在这个形式上,会比较看不出欧拉方程与牛顿第二运动定律的直接关联。

以下是用矢量及守恒形式写成的欧拉方程:

其中

在这个形式下,不难看出f、f及f是通量。

以上方程分别代表质量守恒、动量的三个分量及能量。里面有五条方程,六个未知数。封闭系统需要一条状态方程;最常用的是理想气体定律(即,其中为密度,为绝热指数,为内能)。

注意能量方程的奇特形式;见蓝金-雨果尼厄方程。附加含的项可被诠释成相邻的流体元对某流体元所作的机械功。在非压缩性流体中,这些附加项的总和为零。

取流线上欧拉方程的积分,假设密度不变,及状态方程具有足够的刚性,可得有名的伯努利定律。

在构建数值解,例如求雷曼问题的近似解的时候,展开通量可以是很重要的一环。使用上面以矢量表示的守恒形式方程,展开其通量可得非守恒形式如下:

其中A、A及A为通量雅可比矩阵,各矩阵为:

上式中这些通量雅可比矩阵A、A及A,还是状态矢量m的函数,因此这种形式的欧拉方程跟原方程一样,都是非线性方程。在状态矢量m平滑变动的区间内,这种非守恒形式跟原来守恒形式的欧拉方程是相同的。

将理想气体定律用作状态方程,可推导出完整的雅可比矩阵形式,矩阵如下:

方向的通量雅可比矩阵:

方向的通量雅可比矩阵:

其中 γ ^ = γ 1 {\displaystyle {\hat {\gamma }}=\gamma -1} 为:

及声速为:

将含通量雅可比矩阵的非守恒形式,在状态 = 0的周围线性化后,可得线性化欧拉方程如下:

其中A 、A及A分别为A、A及A于某参考状态 = 0的值。

如果弃用守恒变量而改用特征变量的话,欧拉方程可被变换成非耦合波方程。举例说,考虑以线性通量雅可比矩阵形式表示的一维(1-D)欧拉方程:

矩阵A可被对角化,即可将其分解成:

上式中,r、r及r为矩阵A的右特征矢量(若 A x R = λ R x R ,   {\displaystyle Ax_{R}=\lambda _{R}x_{R},\ } 为右特征矢量),而、及则为对应的特征值。

设特征变量为:

由于A不变,原来的一维通量雅可比矩阵方程,乘上P−1后可得:

经过这样的处理后,方程实际上已经被非耦合化,而且可被视作三条波方程,其中特征值为波速。变量i为雷曼不变量,或在一般的双曲系统中为特征变量。

欧拉方程为非线性双曲方程,而它们的通解为波。与海浪一样,由欧拉方程所描述的波碎掉后,所谓的冲击波就会形成;这是一种非线性效应,所以其解为多值函数(即函数内的某自变量会产生多个因变量)。物理上这代表构建微分方程时所用的假设已经崩溃,如果要从方程上取得更多信息,就必须回到更基础的积分形式。然后,在构建弱解时,需要使用蓝金-雨果尼厄冲击波条件,在流动的物理量中避开不连续点“跳跃”,上述物理量有密度、速度、压强及熵。物理量很少会出现不连续性;在现实的流动中,黏性会把这些不连续点平滑化。

许多领域都有研究冲击波的传播,尤其是出现流动处于足够高速的领域,例如空气动力学及火箭推进。

在某些问题中,特别是分析导管中的可压缩流,或是当流动呈圆柱或球状对称的时候,一维欧拉方程都是很有用的近似法。一般来说,解欧拉方程会用到黎曼的特征线法。首先需要找出特征线,这条曲线位于两个独立变量(即及)所构成的平面上,在这条线上偏微分方程(PDE)会退化成常微分方程(ODE)。欧拉方程的数值解法非常倚赖特征线法。

相关

  • 中国科学院数学与系统科学研究院中国科学院数学与系统科学研究院(以下简称“数学院”),成立于1998年12月,所址地处北京市海淀区中关村,最早可以追溯到其前身——中国科学院数学研究所。数学研究所成立于1952年,是
  • 时间的不实在性时间的不实在性(The Unreality of Time),是剑桥大学观念论哲学家约翰·麦克塔加特(英语:J. M. E. McTaggart)最著名的哲学作品。在1908年他发表于哲学杂志Mind的一篇文章中,麦克塔
  • 美国优越主义美国例外论(英语:American Exceptionalism),又译美国卓异主义、美国例外主义、美式例外主义,一种理论与意识形态,认为美利坚合众国是个独特的国家,与其他国家完全不同。为亚历西斯
  • 头等舱 (航空)头等舱是大多数民航客机里最豪华的一个舱等,通常设置在飞机的头端。虽然国内线的顶级舱等(在北美称为“头等舱”)相当常见,但绝大多数美国的航空公司(除了美国航空)和许多它国的航
  • MIMO多输入多输出系统(Multi-input Multi-output ; MIMO)是一种用来描述多天线无线通信系统的抽象数学模型,能利用发射端的多个天线各自独立发送信号,同时在接收端用多个天线接收并
  • 系统建模语言系统建模语言(Systems Modeling Language)简称SysML,是针对系统工程应用的通用建模语言(英语:general-purpose modeling)。系统建模语言可以分析许多系统及超系统(英语:System of sy
  • 米那·萨菲·优素福·卡萨斯贝米那·萨菲·优素福·卡萨斯贝(阿拉伯语:معاذ صافي يوسف الكساسبة‎;1988年5月29日-2015年1月3日?),约旦皇家空军(英语:Royal Jordanian Air Force)中尉飞行员,201
  • 唐代海东藩阀志存《唐代海东藩阀志存》是一部专门记述古代高句丽、百济遗民的最初研究,由清末金石学家罗振玉撰写。线装一册民国26年(1937年)出版,石印本。罗振玉在洛阳北邙山一带发掘面世的高句
  • 加勒特·韦伯-盖尔加勒特·韦伯-盖尔(英语:Garrett Weber-Gale,1985年8月6日-),美国男子游泳运动员。曾参加2008年夏季奥林匹克运动会,在比赛期间共收获两枚接力项目的金牌。除此之外,他也在世界长池
  • 第53届奥斯卡金像奖第53届学院奖颁发典礼于1981年3月31日在洛杉矶的多萝西·钱德勒大厅(英语:Dorothy Chandler Pavilion)举行,著名电视节目主持人、喜剧演员约翰尼·卡森担任主持。本届颁奖典礼原