悬链线

✍ dations ◷ 2024-12-22 20:31:57 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 脂质体脂质粒(英语:Liposome)也称为微脂粒,是一种具有靶向给药功能的新型药物制剂。脂质粒是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是
  • 奥卡姆的威廉奥卡姆的威廉(William of Ockham/Occam,约1285年-1349年),又译为奥坎、奥康,出生于英格兰的萨里郡奥卡姆(Ockham),在大学注册为奥卡姆的威廉。14世纪逻辑学家、圣方济各会修士。奥卡
  • 钴化合物钴化合物是钴和其它元素形成的化合物。钴在化合物中,最稳定的价态是+2价,在特定配体的存在下,也有+3价的稳定化合物。此外,还存在着高氧化态+4、+5和低氧化态-1、0、+1的钴化合
  • 陈十一陈十一(1956年10月1日-),浙江台州人,汉族,中国物理学家、政治人物,第十二届全国人民代表大会浙江地区代表,南方科技大学校长,中国科学院院士。1981年毕业于浙江大学力学系专业,1984年
  • 弥漫星云弥漫星云,意思是朦胧,云雾。弥漫星云没有规则的形状,也没有明显的边界。实际上,除环状对称的行星状星云外,所有的星云都可以称作形状不规则的弥漫星云。弥漫星云平均直径大约几十
  • 禅那禅那(梵语:ध्यान,dhyāna,巴利语:झान,jhāna),又译为驮那演那,佛教术语,意译为思惟修或静虑,在佛教经论中,专指四种色界定。修行进入四种禅那的方法,为奢摩他与毘钵舍那即止观。
  • 美尼斯美尼斯是传说中第一位将古埃及统一起来的统治者。通常认为他于公元前3100年前创立了古埃及第一王朝。如同古罗马的罗慕路斯,美尼斯被视为古埃及历史的创建者。根据传说,将上下
  • 尤索夫·伊萨尤索夫·宾·伊萨克(马来语:Yusof bin Ishak,1910年8月12日-1970年11月23日)为新加坡共和国首任总统。生于英属马来亚的霹雳州。他在1959年至1965年担任新加坡的元首(Yang di-Pert
  • Ithaca伊萨卡(Ithaca)可以指:
  • 医疗废物生物医疗废物是一种易腐烂并潜在传染性的危险垃圾。但也包括某些相关的垃圾,比如外包装、未用的绷带、输液袋之类的。细说来说,废弃的尖锐垃圾,如针头,在未经处理的情况下,无论是