悬链线

✍ dations ◷ 2025-01-31 07:51:49 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 咽喉痛咽喉痛(sore throat、throat pain,又称喉咙痛或喉痛),是指咽喉出现痛楚的症状,最主要的成因是咽喉炎(喉咙发炎),但可由其他原因引致,例如白喉和伤风感冒威胁。 服用非类固醇消炎止痛
  • 针筒注射器由前端带有小孔的针筒以及与之匹配的活塞芯杆组成。注射器用来将少量的液体或其注入到其它方法无法接近的区域或者从那些地方抽出。在芯杆拔出的时候液体或者气体从针
  • 北达科他北达科他州(英语:State of North Dakota),简称北达州,是美国中西部的一州。它是大草原里最北的一州,包含达科他地区的北半部。19世纪时,北达科塔被认为是美国旧西部的一部分。北达
  • 浮萍浮萍(学名:Lemna minor),别称青萍、水薸(台湾话:.mw-parser-output .sans-serif{font-family:-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,Lato,"Helvetica Neue",Helvet
  • 阿勒特阿勒特(英语:Alert)是全球最北端的永久居住地,位于82°28′N 62°30′W / 82.467°N 62.500°W / 82.467; -62.500,加拿大努纳武特埃尔斯米尔岛东北端的雪莱顿角(Cape Sheridan)往
  • 剧情片剧情片(drama film)指以故事剧情为主题的电影,是其中一种片种。剧情片一般长度在30分钟或以上,以电影院作为发放对像。相对于其他片种如动作片或爱情片以动作或爱情带动故事的推
  • 高铁酸盐高铁酸盐中的高铁酸根是一种无机阴离子,化学式2-。它对光敏感,使得化合物和溶解有它的溶液呈淡紫色。其为已知最强的对水稳定的氧化物质之一。尽管它被归为弱碱,高铁酸盐浓溶液
  • 7I7&I控股(日语:セブン&アイ・ホールディングス Sebun ando ai Hōrudingusu */?)是日本的大型零售、流通事业控股公司,旗下拥有7-Eleven、伊藤洋华堂、SOGO、西武百货等公司。7
  • 中州韵白话文中州韵,又称韵白,是指在明代中原地区使用的方言。中州韵在元末是以《中原音韵》韵书为参考的。到了明初,又以《洪武正韵》为依据。是明代主流官话。在宋代之前,官方文书乃至民间
  • 人类冠状病毒NL63人类冠状病毒NL63(Human coronavirus NL63、HCoV-NL63)是甲型冠状病毒属的一种病毒,于2004年由荷兰研究人员发表,与同属的人类冠状病毒229E以及乙型冠状病毒属的人类冠状病毒OC4