首页 >
悬链线
✍ dations ◷ 2025-07-11 15:29:09 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 代谢途径代谢途径(英语:metabolic pathway)在生物化学中,是一连串在细胞内发生的化学反应,并由酶所催化,形成使用或储存的代谢物,或引发另一个代谢途径(称为“流量控制反应”)。多种途径都是
- 溴化钾3.119 g/ml(液)65 g/100 mL (20 °C) 67.8 g/100 mL (25 °C)102 g/100 mL (100 °C)溴化钾,分子式:KBr。它是一种白色稍具潮解性的晶体或粉末。易溶于水,在乙醇中微溶。可以用作
- 血胆红素过高胆红素(英文:Bilirubin)是胆色素的一种,是人类胆汁的主要色素,呈橙黄色。它是体内血红素的主要代谢产物,有毒性,可对大脑和神经系统引起不可逆的损害,但也有抗氧化剂功能,可以抑制亚
- bspan style=color:black;⑯/span/b坐标:40°13′00″N 26°26′00″E / 40.216667°N 26.433333°E / 40.216667; 26.433333达达尼尔海峡(希腊语:Δαρδανέλλια,转写:Dardanéllia),土耳其称恰纳卡莱海峡(土
- 管理和预算办公室美国行政管理和预算局(Office of Management and Budget, OMB),美国总统办事机构之一,是美国总统维持对政府财政计划控制的机关。1921年,《美国预算和会计法》规定美国总统应向
- 村落聚落,为人民聚居的地方,约分为“都市聚落”(城市)和“乡村聚落”(村落)。聚落多用作人类社会的早期进入定居生活以后,集中居住的区域。考古学上常指早期人类集中居住地域。部落,为部
- 房颤心房颤动(英语:Atrial fibrillation,简称:Af 或 A-fib),又称为心房微颤、房颤、心房纤维性颤动、心房纤颤、房性纤颤等,是心脏不正常节律/心律不整的一种,特色是心脏快速而不规则的
- 弗林效应弗林效应(Flynn effect)指智商测试的结果逐年增加的现象。弗林效应是以James R. Flynn命名的。最早提出这现象的人是Richard Lynn。在1982年的一期《自然》内,他提出美国人智力
- 盟军统治时期同盟国军事占领奥地利(德语:Besetztes Nachkriegsösterreich)指1945年纳粹德国投降后,由苏、美、英、法四国对奥地利实施的分区军事占领。1945年德苏两国在维也纳发生8天的激烈
- 桑叶桑叶含有大量钙、钾、铁等无机物,也含有丰富之维生素及53%的食物纤维,还含特有之水溶性成分,此成分可和a-葡萄糖苷酶结合,降低双糖之分解,抑制饭后血糖上升的效应。桑叶内含有丰