首页 >
悬链线
✍ dations ◷ 2025-04-04 12:21:13 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 圣华金谷圣华金谷(英语:San Joaquin Valley /ˌsæn hwɑːˈkiːn/)是美国加利福尼亚州中央谷地的一片地区,位于萨克拉门托-圣何塞河三角洲南部。这片谷地里有八个县,即弗雷斯诺县、克恩
- 塞万提斯米格尔·德·塞万提斯·萨韦德拉(西班牙语:Miguel de Cervantes Saavedra,1547年9月29日-1616年4月23日),西班牙小说家、剧作家、诗人。1547年9月29日出生,1616年4月23日在马德里逝
- 博尔扎诺省博尔扎诺-南蒂罗尔自治省(意大利语:Provincia autonoma di Bolzano;德语:Autonome Provinz Bozen;拉登语:Provinzia autonòma de Balsan),又称上阿迪杰(Alto Adige)或南蒂罗尔(Südtiro
- 脱氨脱氨作用(英语:deamination,亦可称为脱氨基)是指移除分子上的一个氨基。人类的肝脏经由脱氨作用将氨基酸分解,当氨基酸的氨基被去除之后,会转变成氨。由碳及氢所组成的残余部分,则
- 查慎行选自《清代学者象传》第一集,清叶衍兰辑摹,黄小泉绘。查慎行(1650年6月7日-1727年9月25日),本名嗣琏,字夏重,后改名慎行,字悔余,号他山,又号查田,赐号烟波钓徒,晚年居于初白庵,所以又称查
- 恋气球恋气球(balloon fetishests)是指对气球或充气的塑料玩具有性迷恋,并经常在自慰或者性生活中将其作为性爱玩具。而有这种情况的人被称为气球性嗜好者或气球迷恋者(looners)。
- ɡɣ浊软颚塞擦音是一种不常见的辅音,出现在一些口语中,国际音标记作⟨ɡ͡ɣ⟩或⟨ɡ͜ɣ⟩,X-SAMPA音标则记作g_G。其中间的弧线可以省略,则音标可以分别改写作⟨ɡɣ⟩(IPA)、gG(X-S
- 吕应钟吕应钟(1948年-),台湾宜兰人,现担任台湾全我身心灵中心主持教授,媒体曾以“台湾飞碟UFO研究教父”称呼,身心灵合医学(Trinity Medicine)提倡人。吕应钟自1975迄2014年翻译与出版各类
- 沈清传《沈清传》,是在朝鲜民间传说的基础上加工成书的小说,与《兴夫传》、《春香传》一起被称为朝鲜三大古典名著。孝女沈清出生七天后丧母,与盲父沈学圭相依为命,艰难度日。他们受了
- 连接组连接组(英语:Connectome)是大脑中神经连接的综合图,可以被认为是其“接线图”。 更广泛地说,连接组将包括生物体神经系统内所有神经连接的映射。连接组的产生和研究,称为连接组学(