首页 >
悬链线
✍ dations ◷ 2025-05-17 19:28:58 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 百日咳杆菌百日咳博德特氏杆菌(Bordetella pertussis)是一种革兰氏阴性、好氧性、博德氏菌属的球杆菌(一说是短杆菌,见参考来源2),而且是百日咳的病原体。百日咳杆菌在特定条件下可以产生鞭
- 论元论元(Argument),也称行动元(Actant)、项,不及物动词主语也称变元,在句法学上指句子当中具有指称功能、强制补充谓语语义的名词性成分。这些谓语往往指的是动词(V)及其助动词;名词性成
- 爱尔兰皇家外科医学院爱尔兰皇家外科医学院,英文名Royal College of Surgeons in Ireland,简称RCSI。成立于1784年,是所私立医学院。爱尔兰皇家外科医学院位于爱尔兰的都柏林市。由于爱尔兰共和国曾
- 躯体躯体神经系统(又称动物神经系统)和内脏神经系统共同组成脊椎动物的周围神经系统。这部分的神经与骨骼肌的自主(有意识的)控制有关。在周围神经系统和中枢神经系统都有躯体神经
- Y RNAY RNA系一种短非编码RNA。它是Ro60核糖核蛋白颗粒的组分之一。在全身性红斑狼疮患者体内,它是患者自身抗体的攻击目标之一。Y RNA对DNA复制来说至关重要,因为它们能与染色质和
- 弗吉尼亚·伍尔夫弗吉尼亚·伍尔夫(英语:Virginia Woolf;1882年1月25日-1941年3月28日),英国作家,被誉为二十世纪现代主义与女性主义的先锋。在一战与二战的战间期,她是伦敦文学界的核心人物,同时也是
- 日冕大量抛射日冕物质抛射(coronal mass ejection,CME)是伴随着日冕从太阳释放物质的明显事件。它们通常出现在日珥的喷发期间,并经常伴随着太阳的耀斑出现。被释放至太阳风中的等离子体可以
- 杜预杜预(222年-285年),字元凯,京兆郡杜陵县(今陕西省西安市)人,曹魏末与西晋前期政治家、军事家、学者。以破竹之势一举歼灭东吴,帮助西晋完成统一的工作。出于京兆杜氏,西汉御史大夫杜延
- 极地涡旋极地涡旋(英语:Polar Vortex;或极地涡旋),是一种发生于极地的,介于对流层与平流层的中、上部的,持续性且大规模的气旋。这种涡旋在极夜的时候最为强大,因为此时的温度梯度是最大,但持
- 战场战场,是在战争状态,敌军相遇或发生战争的地方。历史回望,所有战役都有一处地方作为战场。经历史学家考究,战场可以分为主战场及其他。战场又可以分为前线、二线和大后方等。不过