悬链线

✍ dations ◷ 2025-04-26 12:14:36 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 副粘液病毒亚科副黏液病毒亚科(Paramyxovirinae),属于副黏液病毒科,包括:
  • 糊精糊精(dextrin、pyrodextrin)是淀粉的不完全水解产物,有固定的分子通式,但是碳链长短不一定相同。一般工业上是由马铃薯淀粉的酸水解制得。 糊精在肠道内有利于嗜酸杆菌生长,能减
  • 语言能力语言能力,又称为语言学能力、语言才能、语言本能,是指一个人所拥有的关于其母语的知识和技能。例如,了解字词都是什么含义,如何将字词组成句子以及字词如何发音等等。Noam Choms
  • 东海撞击事件东方海(拉丁语:Mare Orientale)是月海之一,位于月球正面最西部边缘,难于在地球上观测,其直径为327公里,面积约6.9万平方公里。宇宙飞船拍摄的图片揭示了它是月球上最引人注目的大
  • 加拿大原住民加拿大原住民,他们是在1982年宪政法案第25和35节中所认定的原住民族群,分别是第一民族、因纽特人以及梅蒂人。根据2006年的人口普查,加拿大总人口超过33,570,000人,其中包含3.8%
  • 计算机 (消歧义)计算机可以指:
  • 旗山郡旗山郡为1920年至1945年台湾日治时期的行政区划之一。该郡隶属高雄州。旗山郡役所设于旗山街。旗山郡管辖旗山街、美浓街、六龟庄、甲仙庄、杉林庄、内门庄及不设街庄的蕃地
  • 星形胶质细胞星形胶质细胞,也称星状细胞(astrocyte、AS),为神经胶质细胞的一种。星形胶质细胞在大脑中的比例尚不明确。有研究发现,星形胶质细胞的比例因区域而异,占所有神经胶质细胞的20%至40%
  • 灵猫灵猫科(学名Viverridae)是食肉目下的一个科,包括大灵猫、小灵猫、熊狸等。
  • 草粿草粿可以指: