首页 >
悬链线
✍ dations ◷ 2025-11-05 15:14:29 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 出生率在人口统计学中,出生率(crude birth rate,CBR)的定义是每年、每一千人当中的新生人口数,可以数学式表达为:C B R = n
- 弗雷德里克·桑格诺贝尔化学奖(1958年) 皇家奖章(1969年) 盖尔德纳国际奖(1971年) 科普利奖章(1977年)弗雷德里克·桑格,OM,CH,CBE,FRS(英语:Frederick Sanger,1918年8月13日-2013年11月19日),英国生物化学家,曾
- ε详见细菌分类表ε-变形菌要么厄氏杆菌是变形菌中的一类,与δ-变形菌关系最近。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
- 博多语博多语(बर' )是印度阿萨姆邦的官方语言之一(该邦的主要官方语言是阿萨姆语),属于汉藏语系的萨尔语群,接近中国的景颇语。这个语言有两个声调,音节结构简单,没有复辅音。
- Fe(ClOsub3/sub)sub3/sub氯酸铁是一种无机化合物,化学式为Fe(ClO3)3。它可由氯酸铵水溶液和氢氧化铁的反应制得。氯酸铁易溶于水,形成红黄色溶液。其碱式盐难溶于水。
- 蔓足下纲(Cirripedia)详见内文藤壶是颚足纲鞘甲亚纲蔓足下纲(Cirripedia,原蔓足纲、蔓足亚纲)生物的通称。所有的藤壶都生活在海洋中,其中绝大部分又生活在潮间带等浅海海域。其幼体(有两个阶段)为自游
- 金字塔广场坐标:48°51′49.95″N 2°19′55.69″E / 48.8638750°N 2.3321361°E / 48.8638750; 2.3321361 金字塔广场(Place des Pyramides)是法国巴黎第一区的一个广场,位于里窝利路的
- 锌族元素固体、 液体、 气体12族元素(常称锌族元素)是指元素周期表上第12族(ⅡB族)的元素,位于11族元素和硼族元素之间。12族元素包含锌(Zn)、镉(Cd)、汞(Hg)、鿔(Cn),均为过渡金属元素,其中鿔为人
- 非常母亲《母亲》(韩语:마더,英语:Mother),是一部2009年上映的韩国电影,曾代表韩国角逐2010年奥斯卡最佳外语片。讲述母亲为了洗清智障儿子的罪行而去寻找真相的故事。守寡多年的母亲(金惠子
- 小雅《诗经》是中国最早的诗歌总集,收录自西周初年至春秋中叶(约前11世纪-前6世纪)的诗歌305篇(除此之外还有6篇有题目无内容,即有目无辞,称为笙诗六篇,题目分别是南陔、白华、华黍、由
