首页 >
悬链线
✍ dations ◷ 2025-06-28 20:00:11 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 阳极阳极(英语:Anode)是发生氧化反应的电极。相对的,阴极(英语:Cathode)是发生还原反应的电极。英文anode和cathode是法拉第发明的词,anode表示“发生氧化反应的电极”(或者失去电子的电
- 触角触角亦称为触须,是指某些有爪动物、节肢动物或是软体动物等生长于头部的一种感觉器官。大部分都生长于头部的两侧,具有听觉、触觉以及嗅觉等功能。形状有许多种类,常见的有丝状
- 裨治文裨治文(1801年4月22日-1861年11月2日),又名高理文,原名伊利亚·科尔曼·布里奇曼(Elijah Coleman Bridgman),美部会传教士,响应新教第一位来华传教士英国人马礼逊(R.Morrison)的呼吁,而
- 前卫先锋派(法语:avant-garde,已被英语吸收,对应英文意为front guard、advance guard或vanguard,直译为“前卫”)常指涉新颖的或实验性的作品或人物,尤其是对于艺术、文化及政治的层面
- World Bank189个国家(国际复兴开发银行) 173个国家(国际开发协会)世界银行(英语:World Bank,缩写WB)是为发展中国家资本项目提供贷款的联合国系统国际金融机构。它是世界银行集团的组成机构之
- 罗斯汗国罗斯汗国是现代历史学家所用的名称,并不是当时对该国之称呼。罗斯汗国是一个由罗斯人所建立的国家或城市集团。该地区当时的人口由波罗的海人,斯拉夫人,芬兰人,突厥人,匈牙利人和
- 苏东坡苏轼(1037年1月8日-1101年8月24日),眉州眉山(今四川省眉山市)人,北宋时著名的文学家、政治家、艺术家、医学家。字子瞻,一字和仲,号东坡居士、铁冠道人。嘉佑二年进士,累官至端明殿学
- 罗氏制药罗氏(德语:F. Hoffmann-La Roche AG,简称Roche),总部位于瑞士巴塞尔的跨国医药研发生产商。它始创于1896年,现属于罗氏控股股份有限公司。罗氏于2009年3月26日以大约468亿美元完成
- 水木茂水木 茂(日语:水木しげる,1922年3月8日-2015年11月30日),本名为武良茂(日语:武良 茂),日本漫画家。曾居住在东京都调布市。担任世界妖怪协会会长、日本民俗学会会员、民族艺术学会评议
- 谥谥号(“谥”,拼音:shì,注音:ㄕˋ,中古拟音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Ge