悬链线

✍ dations ◷ 2025-04-02 13:41:59 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 微分干涉相差显微镜微分干涉相差显微技术(DIC),又称Normarski干涉相差显微技术或Normarski显微镜,是一种增强对比度来观察未染色的透明的样品的光学显微镜。DIC根据干涉测量获取有关样品光路长
  • 基巴基帕 (希伯来文:כִּפָּה‎,Kippah)是犹太人男性所佩带的一张薄布料或羊毛纺织制成的头饰,用发夹固定。今天佩带基帕原因有:犹太教因教派不同,令其教派男性所佩带的基帕和以
  • 乙部,是为汉字索引中的部首之一,康熙字典214个部首中的第五个(一划的则为第五个)。就正体中文中,乙部归于一划部首。而简体部首称“乛部”,而乙为‘乛部’的附形部首。乙部通常从
  • BiHsub3/sub铋化氢又称䏟,是由铋和氢组成,化学式为BiH3的化合物。铋化氢是所有结构和氨同为XH3的化合物中,分子量最大的一个。铋化氢不稳定,即使在摄氏零度以下,仍然会分解为铋和氢气。铋化
  • 判例法判例法(英语:case law),就是以个案判例的形式表现出的法律规范,以遵循先例的法律原则作为其建立的基础。简单而言,作为判例的先例对其后的案件具有法律约束力,可以成为日后法官审判
  • X射线结晶学X光散射技术或X射线衍射技术(英语:X-ray scattering techniques)是一系列常用的非破坏性分析技术,可用于揭示物质的晶体结构、化学组成以及物理性质。这些技术都是以观测X射线穿
  • Kylie Minogue凯莉·安·米洛,OBE(英语:Kylie Ann Minogue,/ˈkaɪli mᵻˈnoʊɡ/,1968年5月28日-)是一位澳洲歌手、作曲家、演员。1987年凯莉凭借在电视剧“家有芳邻”中饰演“Charlene”成名
  • 普林斯巴期普林斯巴期(英语:Pliensbachian)是侏罗纪的第三个时期,年代大约位于190.8–182.7百万年前。
  • 秦开秦开(?-?)是战国时燕国昭王时代的将军。荆轲副将秦舞阳的祖父。秦开是燕国将军。前3世纪初时被送往东胡成为人质。由于得到东胡的信任,秦开通晓东胡的民情风俗及其虚实。燕昭王即
  • Dennett, Daniel丹尼尔·丹尼特(Daniel Clement Dennett,1942年3月28日-)是美国哲学家、作家及认知科学家。其研究集中于科学哲学、生物学哲学,特别是与演化生物学及认知科学有关的课题。他目前