悬链线

✍ dations ◷ 2025-07-19 06:46:16 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 澳门卫生局卫生局 (葡萄牙语:Serviços de Saúde, SS;澳门回归前称为卫生司、葡萄牙语:Serviços de Saúde de Macau, SSM)是专责澳门的医疗及食物安全以及执行政府的医疗卫生政策的政府
  • 奎尼丁奎尼丁(Quinidine)是自金鸡纳树皮提炼出来具有治疗疟疾的药物。口服或注射使用。如果没有心电图监视,不宜静脉注射。
  • 示部,为汉字索引中的部首之一,康熙字典214个部首中的第一百一十三个(五划的则为第十九个)。就繁体和简体中文中,示部归于五划部首。大多以左、下方为部字。且无其他部首可用者将
  • 格奥尔格·奥古斯特·戈德弗斯奥尔格·奥古斯特·戈德弗斯(德语:Georg August Goldfuß,1782年4月18日-1848年10月2日),德国古生物学家、动物学家。戈德弗斯生于巴伐利亚图尔瑙,大学时就读于埃尔朗根-纽伦堡大学
  • 阿蒙涅姆尼苏尼斐卡拉-阿蒙涅姆尼苏(英语:Neferkare Amenemnisu)是古埃及第二十一王朝第二位法老。阿蒙涅姆尼苏的名字在一个金帽子出现,“尼斐卡拉”是阿蒙涅姆尼苏的王名,阿蒙涅姆尼苏的名
  • 军国主义军国主义(英语:Militarism),是一种对于保持强大军事力量的信仰,且具有侵略性的利用强大的军事力量获取其国家利益或推广其国家价值,并将保证军事力量视作为社会最重要目标的意识形
  • 僧侣僧侣来源于梵语僧伽和汉字侣的组合,可以指:
  • 火元素元素或古典元素(英语:Classical elements),在古典哲学中,是一种构成世界上所有物质的最基本实体,或是能量。在历史上,许多不同的民族,都曾经建构出属于他们自己的元素思想,最著名的代
  • 波托米阶末期波托米阶末期灭绝事件(英语:End-Botomian mass extinction)是发生于早寒武纪波托米阶(距今约5.24至5.17亿年前)末期的灭绝事件。在波托米阶末期,发生了一场生物集群灭绝事件,造成了
  • 齿白蚁科齿白蚁科(学名:Serritermitidae)为一种白蚁的科,仅产自南美洲巴西的珍贵独模标本。Holmgren把它放在鼻白蚁科的齿白蚁亚科,Ahmad将齿白蚁亚科自白蚁亚科中移到白蚁科的个亚科。最