悬链线

✍ dations ◷ 2025-11-26 13:54:54 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 布林迪西布林迪西(意大利语:Brindisi)是意大利普利亚大区布林迪西省的首府,面积328平方公里,人口90,175人(2007年)。布林迪西在古时是希腊人的殖民地,当时古希腊人在此地定居。至公元前267年
  • 婚礼婚礼是一种缔结婚姻的仪式,有法律公证仪式或宗教仪式等,用来庆祝一段婚姻的开始,代表结婚。所有的民族和国家都有其传统的婚礼仪式,是其民俗文化的继承途径,也是本民族文化教育的
  • 经痛经痛(Dysmenorrhea),又称痛经或月经绞痛,是女性月经来潮期间出现的疼痛。经痛通常在月经来的时候开始。 典型的症状大约持续不到三天。经痛通常出现在骨盆或下腹部;其他的症状可
  • 坎伯兰坎伯兰(Cumberland)是英国的一个历史地区,位于英格兰的西北部。在12世纪至1974年之间,其是一个实际存在的行政区划。在1889年至1974年之间,其曾是一个行政区划上的郡。1974年,坎伯
  • 公交车公交车可以表示以下一种意思:
  • 丹瑞丹瑞(缅甸语:သန်းရွှေ Than Shwe,1933年2月2日-)是缅甸前任最高领导人,独裁者,大将军衔。丹瑞1933年2月2日出生于曼德勒省,1953年毕业于军校,先后担任营长、副师长、师长、军
  • 瑞典国王瑞典君主是瑞典王国的国家元首。瑞典奉行君主立宪制,实行代议民主的议会制,故此君主虽然拥有瑞典最高官职和军衔,但只是负责国家礼仪的虚君。1810年的《继承法案》指定来自法国
  • 超连续光谱超连续光谱是一种具有极宽带宽的光源,一般利用高峰值功率的超短脉冲通过非线性材料来产生,例如利用飞秒激光脉冲通过光子晶体光纤可以获得覆盖整个可见光波段的连续光谱。在光
  • 烈火战车《烈火战车》(英语:Chariots of Fire)是一部于1981年出品的英国电影,当年奥斯卡最佳影片,由休·哈德森担任执导,以及由伊安·查理逊、班·克劳斯等担任演出。电影改编自真人真事,以
  • 孢印孢子印是辨别蘑菇孢子颜色的一种简便易行的方法,它能在缺乏显微镜观察或化学染色的情况下对蘑菇进行初步鉴定。孢子印由菌褶或菌管中的孢子散落沉积而成。制作孢子印时将菌柄