悬链线

✍ dations ◷ 2025-11-05 15:14:29 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数, a {displaystyle a} 是一个由绳子本身性质和悬挂方式决定的常数, x {displaystyle x} 轴为其准线。具体来说, a = T 0 g λ {displaystyle a={frac {T_{0}}{glambda }}} ,其中 g {displaystyle g} 是重力加速度, λ {displaystyle lambda } 是线密度(假设绳子密度均匀),而 T 0 {displaystyle T_{0}} 是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了 a {displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点 A {displaystyle A} 处受水平向左的拉力 H {displaystyle H} ,右悬挂点处表示为 C {displaystyle C} 点,在 A C {displaystyle AC} 弧线区段任意取一段设为 B {displaystyle B} 点,则 A B {displaystyle AB} 受一个斜向上的拉力 T {displaystyle T} ,设 T {displaystyle T} 和水平方向夹角为 θ {displaystyle theta } ,绳子的质量为 m {displaystyle m} ,受力分析有:T sin ⁡ θ = m g {displaystyle Tsin theta =mg} ;T cos ⁡ θ = H {displaystyle Tcos theta =H} ,tan ⁡ θ = d y d x = m g H {displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}} ,m g = ρ s {displaystyle mg=rho s} , 其中 s {displaystyle s} 是右段 A B {displaystyle AB} 绳子的长度, ρ {displaystyle rho } 是绳子线重量密度, tan ⁡ θ {displaystyle tan theta } 为切线方向,记 a = ρ H {displaystyle a={frac {rho }{H}}} , 代入得微分方程 d y d x = a s {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as} ;利用弧长公式 d s = 1 + d y 2 d x 2 d x {displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;所以 s = ∫ 1 + d y 2 d x 2 d x {displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x} ;再把 s {displaystyle s} 代入微分方程得 d y d x = a ∫ 1 + d y 2 d x 2 d x   ⋯ ⋯   ( 1 ) {displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于 ( 1 ) {displaystyle (1)} 设 p = d y d x {displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}} 微分处理得 p ′ = ρ H 1 + p 2   ⋯ ⋯   ( 2 ) {displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中 p ′ = d p d x = d 2 y d x 2 {displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}} ;对(2)分离常量求积分∫ d p 1 + p 2 = ∫ a d x {displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得 l n ( p + 1 + p 2 ) = a x + C {displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C} ,即 a r s i n h p = a x + C {displaystyle mathrm {arsinh} p=ax+C}其中 a r s i n h p {displaystyle mathrm {arsinh} p} 为反双曲函数;当 x = 0 {displaystyle x=0} 时, d y d x = p = 0 {displaystyle {frac {dy}{dx}}=p=0} ;带入得 C = 0 {displaystyle C=0} ;整理得 a r s i n h p = ρ x H {displaystyle mathrm {arsinh} p={frac {rho x}{H}}} .悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。 在工程中有一种应用, a {displaystyle a} 称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中 L {displaystyle L} 是曲线中某点到0点的链索长度, α {displaystyle alpha } 是该点的正切角, F 0 {displaystyle F_{0}} 是0点处的水平张力, γ {displaystyle gamma } 是链索的单位重量。利用上述公式即能计算出任意点的张力。

相关

  • 出生率在人口统计学中,出生率(crude birth rate,CBR)的定义是每年、每一千人当中的新生人口数,可以数学式表达为:C B R = n
  • 弗雷德里克·桑格诺贝尔化学奖(1958年) 皇家奖章(1969年) 盖尔德纳国际奖(1971年) 科普利奖章(1977年)弗雷德里克·桑格,OM,CH,CBE,FRS(英语:Frederick Sanger,1918年8月13日-2013年11月19日),英国生物化学家,曾
  • ε详见细菌分类表ε-变形菌要么厄氏杆菌是变形菌中的一类,与δ-变形菌关系最近。医学导航:病菌细菌(分类)gr+f/gr+a(t)/gr-p(c/gr-o药物(J1p、w、n、m、疫苗)
  • 博多语博多语(बर' )是印度阿萨姆邦的官方语言之一(该邦的主要官方语言是阿萨姆语),属于汉藏语系的萨尔语群,接近中国的景颇语。这个语言有两个声调,音节结构简单,没有复辅音。
  • Fe(ClOsub3/sub)sub3/sub氯酸铁是一种无机化合物,化学式为Fe(ClO3)3。它可由氯酸铵水溶液和氢氧化铁的反应制得。氯酸铁易溶于水,形成红黄色溶液。其碱式盐难溶于水。
  • 蔓足下纲(Cirripedia)详见内文藤壶是颚足纲鞘甲亚纲蔓足下纲(Cirripedia,原蔓足纲、蔓足亚纲)生物的通称。所有的藤壶都生活在海洋中,其中绝大部分又生活在潮间带等浅海海域。其幼体(有两个阶段)为自游
  • 金字塔广场坐标:48°51′49.95″N 2°19′55.69″E / 48.8638750°N 2.3321361°E / 48.8638750; 2.3321361 金字塔广场(Place des Pyramides)是法国巴黎第一区的一个广场,位于里窝利路的
  • 锌族元素固体、 液体、 气体12族元素(常称锌族元素)是指元素周期表上第12族(ⅡB族)的元素,位于11族元素和硼族元素之间。12族元素包含锌(Zn)、镉(Cd)、汞(Hg)、鿔(Cn),均为过渡金属元素,其中鿔为人
  • 非常母亲《母亲》(韩语:마더,英语:Mother),是一部2009年上映的韩国电影,曾代表韩国角逐2010年奥斯卡最佳外语片。讲述母亲为了洗清智障儿子的罪行而去寻找真相的故事。守寡多年的母亲(金惠子
  • 小雅《诗经》是中国最早的诗歌总集,收录自西周初年至春秋中叶(约前11世纪-前6世纪)的诗歌305篇(除此之外还有6篇有题目无内容,即有目无辞,称为笙诗六篇,题目分别是南陔、白华、华黍、由