首页 >
悬链线
✍ dations ◷ 2025-06-07 15:26:57 #悬链线
悬链线是一种常用曲线,物理上用于描绘悬在水平两点间的因均匀引力作用下的软绳的形状,因此而得名。它的公式为:其中cosh是双曲余弦函数,
a
{displaystyle a}
是一个由绳子本身性质和悬挂方式决定的常数,
x
{displaystyle x}
轴为其准线。具体来说,
a
=
T
0
g
λ
{displaystyle a={frac {T_{0}}{glambda }}}
,其中
g
{displaystyle g}
是重力加速度,
λ
{displaystyle lambda }
是线密度(假设绳子密度均匀),而
T
0
{displaystyle T_{0}}
是绳子上每一点处张力的水平分量,它取决于绳子的悬挂方式;若绳子两端在同一水平面上,则下面的方程决定了
a
{displaystyle a}其中L是绳子总长的一半,d是端点距离的一半。表达式的证明如右图,设最低点
A
{displaystyle A}
处受水平向左的拉力
H
{displaystyle H}
,右悬挂点处表示为
C
{displaystyle C}
点,在
A
C
{displaystyle AC}
弧线区段任意取一段设为
B
{displaystyle B}
点,则
A
B
{displaystyle AB}
受一个斜向上的拉力
T
{displaystyle T}
,设
T
{displaystyle T}
和水平方向夹角为
θ
{displaystyle theta }
,绳子的质量为
m
{displaystyle m}
,受力分析有:T
sin
θ
=
m
g
{displaystyle Tsin theta =mg}
;T
cos
θ
=
H
{displaystyle Tcos theta =H}
,tan
θ
=
d
y
d
x
=
m
g
H
{displaystyle tan theta ={frac {mathrm {d} y}{mathrm {d} x}}={frac {mg}{H}}}
,m
g
=
ρ
s
{displaystyle mg=rho s}
, 其中
s
{displaystyle s}
是右段
A
B
{displaystyle AB}
绳子的长度,
ρ
{displaystyle rho }
是绳子线重量密度,
tan
θ
{displaystyle tan theta }
为切线方向,记
a
=
ρ
H
{displaystyle a={frac {rho }{H}}}
, 代入得微分方程
d
y
d
x
=
a
s
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=as}
;利用弧长公式
d
s
=
1
+
d
y
2
d
x
2
d
x
{displaystyle mathrm {d} s={sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;所以
s
=
∫
1
+
d
y
2
d
x
2
d
x
{displaystyle s=int {sqrt {1+{dfrac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}mathrm {d} x}
;再把
s
{displaystyle s}
代入微分方程得
d
y
d
x
=
a
∫
1
+
d
y
2
d
x
2
d
x
⋯
⋯
(
1
)
{displaystyle {frac {mathrm {d} y}{mathrm {d} x}}=aint {sqrt {1+{frac {mathrm {d} y^{2}}{mathrm {d} x^{2}}}}}{mathrm {d} x} cdots cdots (1)}对于
(
1
)
{displaystyle (1)}
设
p
=
d
y
d
x
{displaystyle p={frac {mathrm {d} y}{mathrm {d} x}}}
微分处理得
p
′
=
ρ
H
1
+
p
2
⋯
⋯
(
2
)
{displaystyle p'={frac {rho }{H}}{sqrt {1+p^{2}}} cdots cdots (2)}其中
p
′
=
d
p
d
x
=
d
2
y
d
x
2
{displaystyle p'={frac {mathrm {d} p}{mathrm {d} x}}={frac {mathrm {d} ^{2}y}{mathrm {d} x^{2}}}}
;对(2)分离常量求积分∫
d
p
1
+
p
2
=
∫
a
d
x
{displaystyle int {frac {dp}{sqrt {1+p^{2}}}}=int adx}得
l
n
(
p
+
1
+
p
2
)
=
a
x
+
C
{displaystyle ln(p+{sqrt {1+p^{2}}})=ax+C}
,即
a
r
s
i
n
h
p
=
a
x
+
C
{displaystyle mathrm {arsinh} p=ax+C}其中
a
r
s
i
n
h
p
{displaystyle mathrm {arsinh} p}
为反双曲函数;当
x
=
0
{displaystyle x=0}
时,
d
y
d
x
=
p
=
0
{displaystyle {frac {dy}{dx}}=p=0}
;带入得
C
=
0
{displaystyle C=0}
;整理得
a
r
s
i
n
h
p
=
ρ
x
H
{displaystyle mathrm {arsinh} p={frac {rho x}{H}}}
.悬索桥、双曲拱桥、架空电缆都用到悬链线的原理。
在工程中有一种应用,
a
{displaystyle a}
称作悬链系数。如果我们改变公式的写法,会给工程应用带来很大帮助,公式及图像如下:还有以下几个公式,可能也有用:其中
L
{displaystyle L}
是曲线中某点到0点的链索长度,
α
{displaystyle alpha }
是该点的正切角,
F
0
{displaystyle F_{0}}
是0点处的水平张力,
γ
{displaystyle gamma }
是链索的单位重量。利用上述公式即能计算出任意点的张力。
相关
- 一氧化碳中毒一氧化碳中毒由吸入过量一氧化碳(CO)所导致。 其症状与流感有相似之处,包括头痛、头晕、虚弱、呕吐、胸痛、迷糊等。大量吸入可导致失去意识、心律不齐、癫痫,以致死亡。长期的
- Hsub3/subNOsub4/sub原硝酸(Orthonitric acid),也称作正硝酸,是一种氮的含氧酸,化学式为H3NO4。由于原硝酸会脱水生成硝酸,目前还没有制得这种酸,但是通过固态反应制得了原硝酸盐:原硝酸钠为白色晶体,
- 约翰斯克里克约翰斯克里克(英语:Johns Creek)是一个位于美国佐治亚州富尔顿县的城市。约翰斯克里克的座标为33°01′59″N 84°12′09″W / 33.03306°N 84.20250°W / 33.03306; -84.20250
- 摩根县摩根县(Morgan County, Georgia)是美国乔治亚州中部的一个县。面积918平方公里。根据美国2000年人口普查,共有人口15,457人。县治麦迪逊(Madison)。成立于1807年12月10日。县名纪
- 高雄捷运 §从政府兴建到民间兴建营运后转移模式高运量捷运:BOT环状轻轨:第三轨供电(750伏特直流电)高雄都会区大众捷运系统,简称高雄捷运、高捷,为中华民国第二座投入营运的城市轨道交通系统、首座机场联络轨道系统,以高雄市区为
- 奇虎360360(全称“三六零安全科技股份有限公司”)(上交所:601360)是中国大陆的一家主营安全相关的互联网公司,由周鸿祎于2005年9月成立。公司口号是“引领中国互联网开放潮流” 旗下的产
- 栉文土器时代栉文土器时代(韩语:즐문토기 시대)或栉文陶器时代是朝鲜历史上史前时代的一个考古时期,相当于朝鲜旧石器时代晚期至新石器时代,约前1万年至前1500年。该时期下分原始期(〇期:约前1
- 辛巳辛巳为干支之一,顺序为第18。前一位是庚辰,后一位是壬午。论阴阳五行,天干之辛属阴之金,地支之巳属阴之火,是火克金相克。中国传统纪年农历的干支纪年中一个循环的第18年称“辛巳
- 假情报造谣即故意传播的虚假情报或信息。造谣可能以伪造的文档、手稿、照片或者使用谣言或编造的情报进行宣传。在信息战中,经常使用间谍故意散播谣言来使敌人处于某种不利的地位上
- 隐居亚纲见内文隐居亚纲(学名:Sedentaria),又名定居亚纲,旧称管栖目,是环节动物门多毛纲下的一个亚纲,该类动物过着穴居生活;会挖洞并透过分泌制造栖管居住;身体异律分节,头部不明显,疣足退化。