特殊函数的渐近展开式

✍ dations ◷ 2025-01-11 21:36:42 #特殊函数,渐近分析

特殊函数的渐近展开式

A n g e r J ( 3 , x ) ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) / ( P i ) ( 35 / 8 ) ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 3 / 2 ) / ( π ) ( 945 / 128 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 5 / 2 ) / ( π ) + O ( ( 1 / x ) ( 7 / 2 ) ) {\displaystyle AngerJ(3,x)\approx {{\sqrt {(}}2)*cos(x+(1/4)*Pi)*{\sqrt {(}}1/x)/{\sqrt {(}}Pi)-(35/8)*{\sqrt {(}}2)*cos(x-(1/4)*Pi)*(1/x)^{(}3/2)/{\sqrt {(}}\pi )-(945/128)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}5/2)/{\sqrt {(}}\pi )+O((1/x)^{(}7/2))}}

A i r y A i ( z ) ( 1 / 2 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 1 / 4 ) / ( π ) ( 5 / 96 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 7 / 4 ) / ( π ) + ( 385 / 9216 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 13 / 4 ) / ( π ) + O ( ( 1 / z ) ( 19 / 4 ) ) {\displaystyle AiryAi(z)\approx (1/2)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}1/4)/{\sqrt {(}}\pi )-(5/96)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}7/4)/{\sqrt {(}}\pi )+(385/9216)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}13/4)/{\sqrt {(}}\pi )+O((1/z)^{(}19/4))}

B e s s e l I ( 3 , x ) ( 1 / 2 ) s q r t ( 2 ) e x p ( x ) s q r t ( 1 / x ) / s q r t ( P i ) ( 35 / 16 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 3 / 2 ) / s q r t ( P i ) + ( 945 / 256 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 5 / 2 ) / s q r t ( P i ) ( 3465 / 2048 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 7 / 2 ) / s q r t ( P i ) ( 45045 / 65536 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 9 / 2 ) / s q r t ( P i ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselI(3,x)\approx {(1/2)*sqrt(2)*exp(x)*sqrt(1/x)/sqrt(Pi)-(35/16)*sqrt(2)*exp(x)*(1/x)^{(}3/2)/sqrt(Pi)+(945/256)*sqrt(2)*exp(x)*(1/x)^{(}5/2)/sqrt(Pi)-(3465/2048)*sqrt(2)*exp(x)*(1/x)^{(}7/2)/sqrt(Pi)-(45045/65536)*sqrt(2)*exp(x)*(1/x)^{(}9/2)/sqrt(Pi)+O((1/x)^{(}11/2))}}

B e s s e l J ( 3 , x ) ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) / ( π ) ( 35 / 8 ) ( 2 ) c o s ( x ( 1 / 4 ) π ) ( 1 / x ) ( 3 / 2 ) / ( π ) ( 945 / 128 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 5 / 2 ) / ( π ) + ( 3465 / 1024 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) π ) ( 1 / x ) ( 7 / 2 ) / ( π ) ( 45045 / 32768 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 9 / 2 ) / ( π ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselJ(3,x)\approx {{\sqrt {(}}2)*cos(x+(1/4)*Pi)*{\sqrt {(}}1/x)/{\sqrt {(}}\pi )-(35/8)*{\sqrt {(}}2)*cos(x-(1/4)*\pi )*(1/x)^{(}3/2)/{\sqrt {(}}\pi )-(945/128)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}5/2)/{\sqrt {(}}\pi )+(3465/1024)*sqrt(2)*cos(x-(1/4)*\pi )*(1/x)^{(}7/2)/{\sqrt {(}}\pi )-(45045/32768)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}9/2)/{\sqrt {(}}\pi )+O((1/x)^{(}11/2))}}

B e s s e l K ( 3 , ) ( 1 / 2 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) s q r t ( 1 / x ) + ( 35 / 16 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 3 / 2 ) + ( 945 / 256 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 5 / 2 ) + ( 3465 / 2048 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 7 / 2 ) ( 45045 / 65536 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 9 / 2 ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselK(3,)\approx {(1/2)*sqrt(2)*sqrt(Pi)*exp(-x)*sqrt(1/x)+(35/16)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}3/2)+(945/256)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}5/2)+(3465/2048)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}7/2)-(45045/65536)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}9/2)+O((1/x)^{(}11/2))}}

B e s s e l Y ( 3 , x ) , s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) s q r t ( 1 / x ) / s q r t ( P i ) + ( 35 / 8 ) s q r t ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) ( 3 / 2 ) / s q r t ( P i ) ( 945 / 128 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 5 / 2 ) / s q r t ( P i ) ( 3465 / 1024 ) s q r t ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) ( 7 / 2 ) / s q r t ( P i ) ( 45045 / 32768 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 9 / 2 ) / s q r t ( P i ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselY(3,x),\approx {sqrt(2)*cos(x-(1/4)*Pi)*sqrt(1/x)/sqrt(Pi)+(35/8)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^{(}3/2)/sqrt(Pi)-(945/128)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^{(}5/2)/sqrt(Pi)-(3465/1024)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^{(}7/2)/sqrt(Pi)-(45045/32768)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^{(}9/2)/sqrt(Pi)+O((1/x)^{(}11/2))}} Γ ( z ) ( l n ( z ) 1 ) z + l n ( ( 2 ) ( π ) ) ( 1 / 2 ) l n ( z ) + 1 / ( 12 z ) 1 / ( 360 z 3 ) + 1 / ( 1260 z 5 ) 1 / ( 1680 z 7 ) + O ( 1 / z 9 ) {\displaystyle \Gamma (z)\approx (ln(z)-1)*z+ln({\sqrt {(}}2)*{\sqrt {(}}\pi ))-(1/2)*ln(z)+1/(12*z)-1/(360*z^{3})+1/(1260*z^{5})-1/(1680*z^{7})+O(1/z^{9})} 误差函数

斐涅尔函数 F r e s n e l C ( x ) 1 / 2 + s i n ( ( 1 / 2 ) π x 2 ) / ( π x ) c o s ( ( 1 / 2 ) π x 2 ) / ( π 2 x 3 ) 3 s i n ( ( 1 / 2 ) π x 2 ) / ( π 3 x 5 ) + 15 c o s ( ( 1 / 2 ) π x 2 ) / ( π 4 x 7 ) + 105 s i n ( ( 1 / 2 ) π x 2 ) / ( π 5 x 9 ) {\displaystyle FresnelC(x)\approx 1/2+sin((1/2)*\pi *x^{2})/(\pi *x)-cos((1/2)*\pi *x^{2})/(\pi ^{2}*x^{3})-3*sin((1/2)*\pi *x^{2})/(\pi ^{3}*x^{5})+15*cos((1/2)*\pi *x^{2})/(\pi ^{4}*x^{7})+105*sin((1/2)*\pi *x^{2})/(\pi ^{5}*x^{9})}

相关

  • 爱德华·路易斯爱德华·路易斯(英语:Edward B. Lewis,1918年5月20日-2004年7月21日),美国遗传学家。1995年与艾瑞克·威斯乔斯和克里斯汀·纽斯林-沃尔哈德共享诺贝尔生理医学奖。1901年:贝林 
  • 时隔36年召开全国代表大会朝鲜劳动党第七次全国代表大会(朝鲜语:조선로동당 제7차 대회/朝鮮勞動黨 第7次大會)于2016年5月6日-2016年5月9日在平壤举行。这是朝鲜劳动党于1980年召开第六次全国代表大会之
  • 格雷默斯机场格雷默斯机场(英语:Greymouth Airport;IATA代码:GMN;ICAO代码:NZGM)是一座位于新西兰西岸大区格雷茅斯的一座机场,其主要民航业务为新西兰国内线。
  • 安巴萨बाप तहसील安巴萨 是达来县的行政中心,位于印度特里普拉邦。根据2001年印度人口普查,安巴萨人口为6052 。男性占54 %,女性占46 % 。安巴萨的平均识字率为70 % ,高于全国平均
  • 反潜航空母舰反潜航空母舰 (ASW carrier) (舷号为CVS)是冷战中出现的一种航空母舰,主要使命是反潜作战。它是第二次世界大战大西洋战役中出现的护航航空母舰的后继,美国海军的大部分该舰由
  • 阿史那贺鲁阿史那贺鲁(?-659年),西突厥汗国大将,室点密可汗五世孙,后自立为西突厥沙钵罗可汗(古突厥文:��������‬,拉丁转写:)。早年为西突厥叶护,在多罗斯川(今额尔齐斯河源头)一带游牧。646年,乙毗射匮就任
  • 五虎唱片五虎唱片公司(1964年 -1970年代),是一家曾经活跃于1960年代的台语流行歌曲唱片公司,五虎成立之初是以“雷虎”为名。1964年至1970年之间发行大量台语流行歌曲唱片,捧红了郭大诚、
  • 河合雅雄河合雅雄(1924年1月2日-),日本动物学家,生于兵库县,毕业于京都大学理学部动物系。河合雅雄主要研究领域是灵长类。日本的灵长类行为学研究已有多年历史,但是因为日文不是国际学术交
  • 中井卓大中井卓大(日语:中井卓大,2003年10月24日-),日本足球运动员,出生于滋贺县,现时于西甲球队皇家马德里青年B队效力,司职中场及翼锋。中井卓大9岁时加入皇马青年军,2018年曾入选日本U-15国
  • 王炎之王炎之(1896年-1980年),男,福建南安人,中国社会活动家,归国华侨,曾任第二、三、四、五届全国政协委员。