特殊函数的渐近展开式

✍ dations ◷ 2025-04-26 00:38:40 #特殊函数,渐近分析

特殊函数的渐近展开式

A n g e r J ( 3 , x ) ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) / ( P i ) ( 35 / 8 ) ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 3 / 2 ) / ( π ) ( 945 / 128 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 5 / 2 ) / ( π ) + O ( ( 1 / x ) ( 7 / 2 ) ) {\displaystyle AngerJ(3,x)\approx {{\sqrt {(}}2)*cos(x+(1/4)*Pi)*{\sqrt {(}}1/x)/{\sqrt {(}}Pi)-(35/8)*{\sqrt {(}}2)*cos(x-(1/4)*Pi)*(1/x)^{(}3/2)/{\sqrt {(}}\pi )-(945/128)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}5/2)/{\sqrt {(}}\pi )+O((1/x)^{(}7/2))}}

A i r y A i ( z ) ( 1 / 2 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 1 / 4 ) / ( π ) ( 5 / 96 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 7 / 4 ) / ( π ) + ( 385 / 9216 ) e x p ( ( 2 / 3 ) z ( 3 / 2 ) ) ( 1 / z ) ( 13 / 4 ) / ( π ) + O ( ( 1 / z ) ( 19 / 4 ) ) {\displaystyle AiryAi(z)\approx (1/2)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}1/4)/{\sqrt {(}}\pi )-(5/96)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}7/4)/{\sqrt {(}}\pi )+(385/9216)*exp(-(2/3)*z^{(}3/2))*(1/z)^{(}13/4)/{\sqrt {(}}\pi )+O((1/z)^{(}19/4))}

B e s s e l I ( 3 , x ) ( 1 / 2 ) s q r t ( 2 ) e x p ( x ) s q r t ( 1 / x ) / s q r t ( P i ) ( 35 / 16 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 3 / 2 ) / s q r t ( P i ) + ( 945 / 256 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 5 / 2 ) / s q r t ( P i ) ( 3465 / 2048 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 7 / 2 ) / s q r t ( P i ) ( 45045 / 65536 ) s q r t ( 2 ) e x p ( x ) ( 1 / x ) ( 9 / 2 ) / s q r t ( P i ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselI(3,x)\approx {(1/2)*sqrt(2)*exp(x)*sqrt(1/x)/sqrt(Pi)-(35/16)*sqrt(2)*exp(x)*(1/x)^{(}3/2)/sqrt(Pi)+(945/256)*sqrt(2)*exp(x)*(1/x)^{(}5/2)/sqrt(Pi)-(3465/2048)*sqrt(2)*exp(x)*(1/x)^{(}7/2)/sqrt(Pi)-(45045/65536)*sqrt(2)*exp(x)*(1/x)^{(}9/2)/sqrt(Pi)+O((1/x)^{(}11/2))}}

B e s s e l J ( 3 , x ) ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) / ( π ) ( 35 / 8 ) ( 2 ) c o s ( x ( 1 / 4 ) π ) ( 1 / x ) ( 3 / 2 ) / ( π ) ( 945 / 128 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 5 / 2 ) / ( π ) + ( 3465 / 1024 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) π ) ( 1 / x ) ( 7 / 2 ) / ( π ) ( 45045 / 32768 ) ( 2 ) c o s ( x + ( 1 / 4 ) π ) ( 1 / x ) ( 9 / 2 ) / ( π ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselJ(3,x)\approx {{\sqrt {(}}2)*cos(x+(1/4)*Pi)*{\sqrt {(}}1/x)/{\sqrt {(}}\pi )-(35/8)*{\sqrt {(}}2)*cos(x-(1/4)*\pi )*(1/x)^{(}3/2)/{\sqrt {(}}\pi )-(945/128)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}5/2)/{\sqrt {(}}\pi )+(3465/1024)*sqrt(2)*cos(x-(1/4)*\pi )*(1/x)^{(}7/2)/{\sqrt {(}}\pi )-(45045/32768)*{\sqrt {(}}2)*cos(x+(1/4)*\pi )*(1/x)^{(}9/2)/{\sqrt {(}}\pi )+O((1/x)^{(}11/2))}}

B e s s e l K ( 3 , ) ( 1 / 2 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) s q r t ( 1 / x ) + ( 35 / 16 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 3 / 2 ) + ( 945 / 256 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 5 / 2 ) + ( 3465 / 2048 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 7 / 2 ) ( 45045 / 65536 ) s q r t ( 2 ) s q r t ( P i ) e x p ( x ) ( 1 / x ) ( 9 / 2 ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselK(3,)\approx {(1/2)*sqrt(2)*sqrt(Pi)*exp(-x)*sqrt(1/x)+(35/16)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}3/2)+(945/256)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}5/2)+(3465/2048)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}7/2)-(45045/65536)*sqrt(2)*sqrt(Pi)*exp(-x)*(1/x)^{(}9/2)+O((1/x)^{(}11/2))}}

B e s s e l Y ( 3 , x ) , s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) s q r t ( 1 / x ) / s q r t ( P i ) + ( 35 / 8 ) s q r t ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) ( 3 / 2 ) / s q r t ( P i ) ( 945 / 128 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 5 / 2 ) / s q r t ( P i ) ( 3465 / 1024 ) s q r t ( 2 ) c o s ( x + ( 1 / 4 ) P i ) ( 1 / x ) ( 7 / 2 ) / s q r t ( P i ) ( 45045 / 32768 ) s q r t ( 2 ) c o s ( x ( 1 / 4 ) P i ) ( 1 / x ) ( 9 / 2 ) / s q r t ( P i ) + O ( ( 1 / x ) ( 11 / 2 ) ) {\displaystyle BesselY(3,x),\approx {sqrt(2)*cos(x-(1/4)*Pi)*sqrt(1/x)/sqrt(Pi)+(35/8)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^{(}3/2)/sqrt(Pi)-(945/128)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^{(}5/2)/sqrt(Pi)-(3465/1024)*sqrt(2)*cos(x+(1/4)*Pi)*(1/x)^{(}7/2)/sqrt(Pi)-(45045/32768)*sqrt(2)*cos(x-(1/4)*Pi)*(1/x)^{(}9/2)/sqrt(Pi)+O((1/x)^{(}11/2))}} Γ ( z ) ( l n ( z ) 1 ) z + l n ( ( 2 ) ( π ) ) ( 1 / 2 ) l n ( z ) + 1 / ( 12 z ) 1 / ( 360 z 3 ) + 1 / ( 1260 z 5 ) 1 / ( 1680 z 7 ) + O ( 1 / z 9 ) {\displaystyle \Gamma (z)\approx (ln(z)-1)*z+ln({\sqrt {(}}2)*{\sqrt {(}}\pi ))-(1/2)*ln(z)+1/(12*z)-1/(360*z^{3})+1/(1260*z^{5})-1/(1680*z^{7})+O(1/z^{9})} 误差函数

斐涅尔函数 F r e s n e l C ( x ) 1 / 2 + s i n ( ( 1 / 2 ) π x 2 ) / ( π x ) c o s ( ( 1 / 2 ) π x 2 ) / ( π 2 x 3 ) 3 s i n ( ( 1 / 2 ) π x 2 ) / ( π 3 x 5 ) + 15 c o s ( ( 1 / 2 ) π x 2 ) / ( π 4 x 7 ) + 105 s i n ( ( 1 / 2 ) π x 2 ) / ( π 5 x 9 ) {\displaystyle FresnelC(x)\approx 1/2+sin((1/2)*\pi *x^{2})/(\pi *x)-cos((1/2)*\pi *x^{2})/(\pi ^{2}*x^{3})-3*sin((1/2)*\pi *x^{2})/(\pi ^{3}*x^{5})+15*cos((1/2)*\pi *x^{2})/(\pi ^{4}*x^{7})+105*sin((1/2)*\pi *x^{2})/(\pi ^{5}*x^{9})}

相关

  • 白内障手术白内障手术(英语:Cataract surgery)是一种眼科手术,其目的是为了去除已经混浊的水晶体,并装入透明的人工晶体,以取代天然晶体的作用。白内障的可能原因包括水晶体随着年龄增长而退
  • 打巴奴里猩猩 (iP. tapanuliensis)打巴奴里猩猩(学名:Pongo tapanuliensis,英语:Tapanuli orangutan)是猩猩属的一种,生活于印度尼西亚苏门答腊岛北部南打巴奴里(英语:South Tapanuli Regency)的森林之中。打巴奴里猩
  • 俄国 (消歧义)俄国,是俄罗斯国家的简称,它通常指历史上或现存的以俄罗斯族为主体的以下国家:
  • 重力能重力势能或重力势能是指物体因为大质量物体的万有引力而具有的势能,其大小与其到大质量的距离有关。E p = −
  • 棕色环实验硝酸盐试验(英语:Nitrate test)指的是用于确定溶液中是否存在硝酸根离子的化学测试。由于几乎所有的硝酸盐都可溶于水;因此与其他阴离子的测试相比,通过湿法测试硝酸盐较为困难。
  • 眼罩眼罩通常是一块布,被用来绑在一个人的头部。以遮住眼睛并挡住配戴者的视线,防止配戴者睁开眼睛看见外物。虽然正确地配戴眼罩,即使配戴者眼睛是睁开的,也不能看见外物,但劣质的眼
  • 人民力量社会主义联盟人民力量社会主义联盟(阿拉伯语:الاتحاد الاشتراكي للقوات الشعبية Al-Ittihad Al-Ishtirakiy Lilqawat Al-Sha'abiyah‎;法语:Union Socialiste
  • 四羰基钴酸四羰基钴酸(又称四羰基氢化钴、四羰基合钴(-I)酸)是一种金属有机化合物,化学式为HCo(CO)4。它是挥发性的黄色液体,其蒸汽无色,具有恶臭。它在空气中易被氧化,微溶于水,是一种强酸。
  • 叶夫根尼·莫罗佐夫叶夫根尼·莫罗佐夫(俄语:Евгений Морозов;白俄罗斯语:Яўгені Марозаў,英语:Evgeny Morozov,1984年-)是一名来自白俄罗斯的作家、研究者,以对科技的政治和
  • 快速反应事件快速反应事件(英语:Quick Time Events,简称QTE),是一种互动式的电子游戏方式,玩家必须根据画面指示输入指令,后续结果会根据玩家输入指令的正确与否有所不同。QTE的名称来源为1999