科恩系列分布

✍ dations ◷ 2025-07-11 11:04:59 #信号处理

科恩系列分布(Cohen's class distribution)于1966年由L. Cohen首次提出,且其使用双线性转换亦是此种转换形式中最通用的一种。在几种常见的时频分布中,Cohen's class分布是最强大的转换之一。随着近几年来时频分析发展,应用也越来越多元。Cohen's class分布和短时距傅里叶变换比较起来有较高的清晰度,但也相对的有交叉项(cross-term)的问题,不过可选择适当的遮罩函数(mask function)来将交叉项的问题降到最低。




模糊函数的定义为:

我们来看一下 x ( t ) {\displaystyle x(t)} 对于模糊函数的影响

(1) 假设 x 1 ( t ) {\displaystyle x_{1}(t)} 是一个高斯函数: a e ( t b ) 2 / 2 c 2 {\displaystyle ae^{-(t-b)^{2}/2c^{2}}} , 其中 a = 1 , b = 0 , c = 1 2 α {\displaystyle a=1,b=0,c={\sqrt {\tfrac {1}{2\alpha }}}}

那么我们可以得到 x 1 ( t ) = e α π t 2 {\displaystyle x_{1}(t)=e^{-\alpha \pi t^{2}}} , 代入模糊函数 A x ( η , τ ) {\displaystyle A_{x}\left(\eta ,\tau \right)} 中:

(2) 假设 x 2 ( t ) {\displaystyle x_{2}(t)} 是一个经过 shifting 和 modulation 的高斯函数:

那么我们可以得到 x 2 ( t ) = e α π ( t t 0 ) 2 + j 2 π f 0 t {\displaystyle x_{2}(t)=e^{-\alpha \pi (t-t_{0})^{2}+j2\pi f_{0}t}} , 代入模糊函数 A x ( η , τ ) {\displaystyle A_{x}\left(\eta ,\tau \right)} 中:

我们可以看到 | A x 1 ( τ , η ) | = | A x 2 ( τ , η ) | {\displaystyle |A_{x_{1}}\left(\tau ,\eta \right)|=|A_{x_{2}}\left(\tau ,\eta \right)|} ,

因此我们可以得出 time shifting t 0 {\displaystyle t_{0}} 和 modulation f 0 {\displaystyle f_{0}} 并不会影响 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

积分后, A x ( τ , η ) = 1 2 α e π ( α τ 2 2 + η 2 2 α ) e j 2 π ( f 0 τ t 0 η ) {\displaystyle A_{x}\left(\tau ,\eta \right)={\sqrt {\tfrac {1}{2\alpha }}}e^{-\pi ({\tfrac {\alpha \tau ^{2}}{2}}+{\tfrac {\eta ^{2}}{2\alpha }})}e^{j2\pi (f_{0}\tau -t_{0}\eta )}}

所以 A x ( τ , η ) {\displaystyle A_{x}\left(\tau ,\eta \right)} τ = 0 , η = 0 {\displaystyle \tau =0,\eta =0} 的地方会有最大的 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

上述所列出来的是当 x ( t ) {\displaystyle x(t)} 只有一项而已 (one term only),如果 x ( t ) {\displaystyle x(t)} 有两项以上的元素构成 (more than two terms), x ( t ) = x 1 ( t ) + x 2 ( t ) + + x n ( t ) {\displaystyle x(t)=x_{1}(t)+x_{2}(t)+\cdot \cdot \cdot +x_{n}(t)} ,依然会有交叉项 (cross-term) 的问题存在。

假设 x ( t ) = x 1 ( t ) + x 2 ( t ) {\displaystyle x(t)=x_{1}(t)+x_{2}(t)} , 其中

x ( t ) {\displaystyle x(t)} 代入模糊函数 A x ( η , τ ) = x ( t + τ 2 ) x ( t τ 2 ) e j 2 π t η d t {\displaystyle A_{x}\left(\eta ,\tau \right)=\int _{-\infty }^{\infty }x(t+{\tfrac {\tau }{2}})x^{*}(t-{\tfrac {\tau }{2}})e^{-j2\pi t\eta }\,dt} 中:


(1) α 1 α 2 {\displaystyle \alpha _{1}\neq \alpha _{2}}

(2) α 1 = α 2 {\displaystyle \alpha _{1}=\alpha _{2}}

因此,我们目前得到 A x 1 ( τ , η ) , A x 2 ( τ , η ) {\displaystyle A_{x_{1}}\left(\tau ,\eta \right),A_{x_{2}}\left(\tau ,\eta \right)} (auto-terms) 和 A x 1 x 2 ( τ , η ) , A x 2 x 1 ( τ , η ) {\displaystyle A_{{x_{1}}{x_{2}}}(\tau ,\eta ),A_{{x_{2}}{x_{1}}}(\tau ,\eta )} (cross-terms) 的公式,我们再仔细的分析 auto-terms 和 cross-terms 分别发生最大值的位置。

首先,先看 Auto-terms:

而 Cross-terms:

换句话说,如果我们绘制一个 x轴为 τ {\displaystyle \tau } , y轴为 η {\displaystyle \eta } 的座标图,Auto-terms发生在原点 ( 0 , 0 ) {\displaystyle (0,0)} 的位置,而 Cross-terms 则是以原点为对称中心,在第一象限和第三象限的位置,

这也是为什么可以透过一个低通函数来滤除噪声,把主成分 Auto-terms 分离出来,避免交叉项的问题。

维格纳分布是由尤金·维格纳于 1932 年提出的新的时频分析方法,对于非稳态的讯号有不错的表现。

相较于傅里叶转换或是短时距傅里叶转换,维格纳分布能有比较好的解析能力。

维格纳分布的定义为:

如果我们假设 x ( t ) {\displaystyle x(t)} 是一个具有弦波特性的讯号, x ( t ) = e j 2 π f 0 t {\displaystyle x(t)=e^{j2\pi f_{0}t}}

那么将此 x ( t ) {\displaystyle x(t)} 代入维格纳分布中,

所以当 x ( t ) = e j 2 π f 0 t {\displaystyle x(t)=e^{j2\pi f_{0}t}} 时, W x ( t , f ) {\displaystyle W_{x}(t,f)} f = f 0 {\displaystyle f=f_{0}} 的地方会有最大值。

换句话说,当 x ( t ) {\displaystyle x(t)} 有 modulation f 0 {\displaystyle f_{0}} 或是有 time shifting t 0 {\displaystyle t_{0}} 的情况发生时,会影响维格纳分布 (Wigner Distribution Function) 最大值 | W x ( t , f ) | {\displaystyle |W_{x}(t,f)|} 的位置

然而,对于科恩系列分布 (Cohen's class distribution)而言,time shifting t 0 {\displaystyle t_{0}} 和 modulation f 0 {\displaystyle f_{0}} 并不会影响 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

相关

  • 子宫内膜癌子宫内膜癌(英语:endometrial cancer),指的是源自子宫内膜的癌症。其病因是由于细胞异常的生长,并且具备了能够侵袭或扩散到身体其他部位的能力。最常见的初始症状为非经期阴道出
  • 行为行为是指有机体(包括人类与其他动物)的动作、行动方式,以及对所处环境与其他生物体或物体的一种反应。词性为中性。在生物适应环境上,行为有很重要的意义,有助于避免受到负面的环
  • 国家法官学院国家法官学院(最高人民法院法官国际交流中心、最高人民法院司法案例研究院),位于北京市丰台区南四环西路111号,是中华人民共和国最高人民法院直属事业单位,是中国法官教育培训的
  • 欧洲短毛猫欧洲短毛猫是原产于欧洲的一种家猫,由捕鼠的欧洲家猫自然演化而来,1949年得国际猫科联盟认证,该组织认可的第一只欧洲短毛猫出生于1940年。这种猫性格活跃,性情温顺,仍有捕鼠的习
  • 尤金·雷巴德尤金·雷巴德(英语:Eugene Reybold,1884年2月13日-1961年11月21日)是二战期间领导美国陆军工兵部队的总工程师,在任时Chief of Engineers(英语:Chief of Engineers)工兵部队人数历史
  • 纪贯之纪贯之(きのつらゆき)是日本的平安时代前期的歌人。‘古今和歌集’的选者之一,三十六歌仙之一。纪友则是表兄弟。纪望行之子。延喜5年(905年),受醍醐天皇之命,和纪友则・壬生忠岑・
  • 韩石峯韩濩(韩语:한호,1543年-1605年),字景洪(韩语:경홍),号石峯(韩语:석봉),朝鲜王朝中期书法家、儒学者。他生于朝鲜中宗时代的松都,在朝鲜成宗时代成了有名书法家,在他一生中他的作品传遍朝鲜全
  • 大羽政章大羽政章(?-?)日本人,日本官员,曾在中国任职。1933年4月14日,满洲国望奎县县长靖国儒同日本参事官大羽政章以“反满抗日”的罪名将韩超逮捕入狱。1933年4月初,大羽政章兼任望奎县参事
  • 舒伦多夫舒伦多夫(德语:Schulendorf)是德国石勒苏益格-荷尔斯泰因州的一个市镇。总面积11.39平方公里,总人口478人,其中男性249人,女性229人(2011年12月31日),人口密度42人/平方公里。
  • 卢森堡的玛格丽塔卢森堡的玛格丽塔(法语:Margaretha de Luxembourg,1957年5月15日-),卢森堡大公若望的次女,现任大公亨利的妹妹。1982年,玛格丽塔与列支敦士登亲王法兰兹·约瑟夫二世的第三子尼库劳