科恩系列分布

✍ dations ◷ 2025-11-04 22:06:24 #信号处理

科恩系列分布(Cohen's class distribution)于1966年由L. Cohen首次提出,且其使用双线性转换亦是此种转换形式中最通用的一种。在几种常见的时频分布中,Cohen's class分布是最强大的转换之一。随着近几年来时频分析发展,应用也越来越多元。Cohen's class分布和短时距傅里叶变换比较起来有较高的清晰度,但也相对的有交叉项(cross-term)的问题,不过可选择适当的遮罩函数(mask function)来将交叉项的问题降到最低。




模糊函数的定义为:

我们来看一下 x ( t ) {\displaystyle x(t)} 对于模糊函数的影响

(1) 假设 x 1 ( t ) {\displaystyle x_{1}(t)} 是一个高斯函数: a e ( t b ) 2 / 2 c 2 {\displaystyle ae^{-(t-b)^{2}/2c^{2}}} , 其中 a = 1 , b = 0 , c = 1 2 α {\displaystyle a=1,b=0,c={\sqrt {\tfrac {1}{2\alpha }}}}

那么我们可以得到 x 1 ( t ) = e α π t 2 {\displaystyle x_{1}(t)=e^{-\alpha \pi t^{2}}} , 代入模糊函数 A x ( η , τ ) {\displaystyle A_{x}\left(\eta ,\tau \right)} 中:

(2) 假设 x 2 ( t ) {\displaystyle x_{2}(t)} 是一个经过 shifting 和 modulation 的高斯函数:

那么我们可以得到 x 2 ( t ) = e α π ( t t 0 ) 2 + j 2 π f 0 t {\displaystyle x_{2}(t)=e^{-\alpha \pi (t-t_{0})^{2}+j2\pi f_{0}t}} , 代入模糊函数 A x ( η , τ ) {\displaystyle A_{x}\left(\eta ,\tau \right)} 中:

我们可以看到 | A x 1 ( τ , η ) | = | A x 2 ( τ , η ) | {\displaystyle |A_{x_{1}}\left(\tau ,\eta \right)|=|A_{x_{2}}\left(\tau ,\eta \right)|} ,

因此我们可以得出 time shifting t 0 {\displaystyle t_{0}} 和 modulation f 0 {\displaystyle f_{0}} 并不会影响 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

积分后, A x ( τ , η ) = 1 2 α e π ( α τ 2 2 + η 2 2 α ) e j 2 π ( f 0 τ t 0 η ) {\displaystyle A_{x}\left(\tau ,\eta \right)={\sqrt {\tfrac {1}{2\alpha }}}e^{-\pi ({\tfrac {\alpha \tau ^{2}}{2}}+{\tfrac {\eta ^{2}}{2\alpha }})}e^{j2\pi (f_{0}\tau -t_{0}\eta )}}

所以 A x ( τ , η ) {\displaystyle A_{x}\left(\tau ,\eta \right)} τ = 0 , η = 0 {\displaystyle \tau =0,\eta =0} 的地方会有最大的 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

上述所列出来的是当 x ( t ) {\displaystyle x(t)} 只有一项而已 (one term only),如果 x ( t ) {\displaystyle x(t)} 有两项以上的元素构成 (more than two terms), x ( t ) = x 1 ( t ) + x 2 ( t ) + + x n ( t ) {\displaystyle x(t)=x_{1}(t)+x_{2}(t)+\cdot \cdot \cdot +x_{n}(t)} ,依然会有交叉项 (cross-term) 的问题存在。

假设 x ( t ) = x 1 ( t ) + x 2 ( t ) {\displaystyle x(t)=x_{1}(t)+x_{2}(t)} , 其中

x ( t ) {\displaystyle x(t)} 代入模糊函数 A x ( η , τ ) = x ( t + τ 2 ) x ( t τ 2 ) e j 2 π t η d t {\displaystyle A_{x}\left(\eta ,\tau \right)=\int _{-\infty }^{\infty }x(t+{\tfrac {\tau }{2}})x^{*}(t-{\tfrac {\tau }{2}})e^{-j2\pi t\eta }\,dt} 中:


(1) α 1 α 2 {\displaystyle \alpha _{1}\neq \alpha _{2}}

(2) α 1 = α 2 {\displaystyle \alpha _{1}=\alpha _{2}}

因此,我们目前得到 A x 1 ( τ , η ) , A x 2 ( τ , η ) {\displaystyle A_{x_{1}}\left(\tau ,\eta \right),A_{x_{2}}\left(\tau ,\eta \right)} (auto-terms) 和 A x 1 x 2 ( τ , η ) , A x 2 x 1 ( τ , η ) {\displaystyle A_{{x_{1}}{x_{2}}}(\tau ,\eta ),A_{{x_{2}}{x_{1}}}(\tau ,\eta )} (cross-terms) 的公式,我们再仔细的分析 auto-terms 和 cross-terms 分别发生最大值的位置。

首先,先看 Auto-terms:

而 Cross-terms:

换句话说,如果我们绘制一个 x轴为 τ {\displaystyle \tau } , y轴为 η {\displaystyle \eta } 的座标图,Auto-terms发生在原点 ( 0 , 0 ) {\displaystyle (0,0)} 的位置,而 Cross-terms 则是以原点为对称中心,在第一象限和第三象限的位置,

这也是为什么可以透过一个低通函数来滤除噪声,把主成分 Auto-terms 分离出来,避免交叉项的问题。

维格纳分布是由尤金·维格纳于 1932 年提出的新的时频分析方法,对于非稳态的讯号有不错的表现。

相较于傅里叶转换或是短时距傅里叶转换,维格纳分布能有比较好的解析能力。

维格纳分布的定义为:

如果我们假设 x ( t ) {\displaystyle x(t)} 是一个具有弦波特性的讯号, x ( t ) = e j 2 π f 0 t {\displaystyle x(t)=e^{j2\pi f_{0}t}}

那么将此 x ( t ) {\displaystyle x(t)} 代入维格纳分布中,

所以当 x ( t ) = e j 2 π f 0 t {\displaystyle x(t)=e^{j2\pi f_{0}t}} 时, W x ( t , f ) {\displaystyle W_{x}(t,f)} f = f 0 {\displaystyle f=f_{0}} 的地方会有最大值。

换句话说,当 x ( t ) {\displaystyle x(t)} 有 modulation f 0 {\displaystyle f_{0}} 或是有 time shifting t 0 {\displaystyle t_{0}} 的情况发生时,会影响维格纳分布 (Wigner Distribution Function) 最大值 | W x ( t , f ) | {\displaystyle |W_{x}(t,f)|} 的位置

然而,对于科恩系列分布 (Cohen's class distribution)而言,time shifting t 0 {\displaystyle t_{0}} 和 modulation f 0 {\displaystyle f_{0}} 并不会影响 | A x ( τ , η ) | {\displaystyle |A_{x}\left(\tau ,\eta \right)|}

相关

  • 重复DNA序列生物细胞中的DNA序列里面包含许多重复序列(repeated sequence),主要可分为两大类,分别是串联重复序列(也叫串接重复序列,Tandem repeat)与散在重复序列(Interspersed repeat)。 串联
  • 胃底胃是人和脊椎动物消化系统的一部分,是贮藏和消化食物的器官。胃上接食道,下接十二指肠。位置大约位于人体的左上腹,肋骨以下。胃主要将大块食物研磨成小块,将食物中的大分子降解
  • 缅历缅历 (缅甸语:မြန်မာသက္ကရာဇ်,发音:或,),亦称为缅甸历法,是一种主要使用于缅甸的阴阳历。该历法的月以恒星月为基准,而年则以回归年为基准。缅历在很大一部分程度上以
  • 格林兰岛面积以下资讯是以2019估计国家领袖国内生产总值(购买力平价) 以下资讯是以2011年估计国内生产总值(国际汇率) 以下资讯是以2011年估计人类发展指数立国历史格陵兰(格陵兰语:Kalaal
  • 尼皮贡湖尼皮贡湖(英语:Lake Nipigon)也称尼匹冈湖,位于加拿大安大略省中西部,桑德贝东北130公里。湖泊长110公里,宽80公里,面积4848平方公里。最深深度165米。湖名在当地印第安语中意为“
  • 埃文·唐埃文·唐(英语:Ewin Tang,2000年-)是美国华盛顿大学的计算机科学家。由于她开发了使普通计算机可以进行过去只能由量子计算机完成的计算的算法,她被《福布斯》杂志提名为 2019年度
  • 电视大学电视大学在中国大陆是指一种以远程教育(通过广播、电视和网络)为主的大学教育方式。中国各地有多所采用此方式授课的机构。
  • 北海日耳曼语鼻音消失法则北海日耳曼语鼻音消失法则(Ingvaeonic nasal spirant law)是一个历史语言学上的一个语音变化现象。这个现象大约发生于中世纪前期,标志着现代的英语和弗里西语等盎格鲁-弗里西
  • Astro欢喜台电视剧集列表本列表列出马来西亚Astro欢喜台播出的电视剧。播出时间 17:30 - 18:30播出时间 18:30 - 19:30
  • 黄介民黄介民(1883年-1956年),名觉,原名时至,字定保,号介民,江西清江县(今樟树市)人,中国革命家,政治人物。黄介民幼年丧母,13岁时跟随父亲经营木业。后来他入私塾念书,21岁时中秀才。宣统元年(19