合成列

✍ dations ◷ 2025-07-02 11:05:27 #群论,模论

在抽象代数中。合成列是借着将代数对象(如群、模等等)拆解为简单的成分,以萃取不变量的方式之一。以模为例,一般环上的模未必能表成单模的直和。但是我们可退而求其次,考虑一组过滤 { 0 } = M 0 M n = M {\displaystyle \{0\}=M_{0}\subset \cdots \subset M_{n}=M} ,使每个子商 M i / M i + 1 {\displaystyle M_{i}/M_{i+1}} 皆为单模;这些单模称为合成因子, n {\displaystyle n} 称为合成长度,都是 M {\displaystyle M} 的不变量。亦可考虑 M {\displaystyle M} 的子模范畴 A {\displaystyle {\mathcal {A}}} ,此时 K ( A ) {\displaystyle \in K({\mathcal {A}})} 可唯一表为合成因子之和;在此意义下,K-群提供了模的半单化。

合成列未必存在,即使存在也未必唯一。然而若尔当-赫尔德定理断言:若一对象有合成列,则子商的同构类是唯一确定的,至多差一个排列。因此,合成列给出有限群或阿廷模的不变量。

G {\displaystyle G} 为群, G {\displaystyle G} 的合成列是对应于一族子群

满足 H i H i + 1 {\displaystyle H_{i}\triangleleft H_{i+1}} ,使其子商 H i + 1 / H i {\displaystyle H_{i+1}/H_{i}} 皆为非平凡的单群;易言之, H i {\displaystyle H_{i}} H i + 1 {\displaystyle H_{i+1}} 的极大正规子群。这些子商也称作合成因子。对于有限群,恒存在合成列。

固定环 R {\displaystyle R} R {\displaystyle R} -模 M {\displaystyle M} M {\displaystyle M} 的合成列是一族子模

其中每个子商 J k + 1 / J k {\displaystyle J_{k+1}/J_{k}} 皆为非平凡的单模 。易言之, J k {\displaystyle J_{k}} J k + 1 {\displaystyle J_{k+1}} 的极大子模。这些子商也称为合成因子。若 R {\displaystyle R} 是阿廷环,根据 Hopkins-Levitzki 定理,任何有限生成的 R {\displaystyle R} -模皆有合成列。

例子. 考虑 12 阶循环群 C 12 {\displaystyle C_{12}} ,它具有三个相异的合成列

合成因子分别为

其间仅差个排列。

略证:以下仅处理模的情形,群的情形可依此类推。假设存在两个合成列

m i n ( r , s ) {\displaystyle \mathrm {min} (r,s)} 行数学归纳法。若 m i n ( r , s ) = 0 {\displaystyle \mathrm {min} (r,s)=0} M = 0 {\displaystyle M=0} ,若 m i n ( r , s ) = 1 {\displaystyle \mathrm {min} (r,s)=1} M {\displaystyle M} 是单模。以下假定 r , s 2 {\displaystyle r,s\geq 2}

M r 1 = M s 1 {\displaystyle M_{r-1}=M_{s-1}} ,据归纳法假设, r 1 = s 1 {\displaystyle r-1=s-1} M i + 1 / M i {\displaystyle M_{i+1}/M_{i}} M i + 1 / M i {\displaystyle M'_{i+1}/M'_{i}} 0 i r 2 {\displaystyle 0\leq i\leq r-2} )之间仅差排列。此外 M / M r 1 = M / M s 1 {\displaystyle M/M_{r-1}=M_{/}M'_{s-1}} ,故定理成立。

M r 1 M s 1 {\displaystyle M_{r-1}\neq M'_{s-1}} 。此时必有 M r 1 + M s 1 = M {\displaystyle M_{r-1}+M'_{s-1}=M} 。置 N := M r 1 M s 1 {\displaystyle N:=M_{r-1}\cap M'_{s-1}} ,于是

N {\displaystyle N} 的合成列 { 0 } = K 0 K t = N {\displaystyle \{0\}=K_{0}\subset \cdots \subset K_{t}=N} ,依上式知

皆为合成列,其合成因子仅差个换位。根据归纳法假设,若同删去尾项 M {\displaystyle M} ,则 (*) 与 (**) 的合成因子分别等同于合成列 M , M {\displaystyle M_{\bullet },M'_{\bullet }} 的合成因子,至多差个排列。是故定理得证。

相关

  • 退伍军人菌嗜肺军团菌是一种有鞭毛,革兰氏阴性,军团菌属多形态性的短小球杆菌。嗜肺军团菌是一种原发的人类病原体,会引发军团病。嗜肺军团菌不抗酸,无孢子,无荚膜,类似于杆菌。不能分解明胶
  • 分形分形(英语:fractal,源自拉丁语:frāctus,有“零碎”、“破裂”之意),又称碎形、残形,通常被定义为“一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后
  • 尤金·派克尤金·纽曼·帕克(英语:Eugene Newman Parker,1927年6月10日-),美国天文学家。尤金·帕克于1948年自密歇根州立大学学士毕业,1951年自加州理工学院取得博士学位。1950年代他研究出
  • 高雄市自行车道列表高雄市政府近年因应潮流,陆续规划许多自行车道,用以节能省碳或疏通交通。而自行车道主要又分以下几个系统,过短或是尚在规划的路线在此不列出。以下主要为精心设计,特别规划出的
  • 森有礼森有礼(1847年8月23日-1889年2月12日),日本政治家、外交家、教育家、改革家,是日本现代教育的先驱和首任文部大臣,被称为“明治六大教育家(日语:明治六大教育家)”之一、和“日本现代
  • 埃米略·列多埃米略·列多·伊尼戈(西班牙语:Emilio Lledó Íñigo,1927年11月5日-)是西班牙哲学家和西班牙皇家语言学院院士。他曾作为哲学教授,活跃于西班牙拉古纳大学、巴塞罗那大学和国立
  • 西奥多·雅克布斯·弗里林海森西奥多·雅克布斯·弗里林海森(Theodore Jacobus Frelinghuysen,1691—1747),德裔美籍的荷兰改革宗神学家,十八世纪美国“大觉醒运动”中的重要人物。西奥多·雅克布斯·弗里林海
  • 伊夸纳乡坐标:44°25′N 24°43′E / 44.417°N 24.717°E / 44.417; 24.717伊夸纳乡(罗马尼亚语:Comuna Icoana, Olt),是罗马尼亚的乡份,位于该国南部,由奥尔特县负责管辖,面积52平方公里,海
  • 蒋中一蒋中一(1984年7月10日-),中国艺人、歌手,原“青春美少女”组合成员之一,1998年8月退出“青春美少女”组合演艺圈,2001年退出演艺圈,2007年9月复出。青春美少女蒋中一Blog 页面存档备
  • 岐阜县知事列表岐阜县知事表列为日本岐阜县成立后之历代知事表列。