倒易点阵

✍ dations ◷ 2025-09-04 18:50:45 #晶体学,几何学,傅里叶分析,晶格点,衍射

倒易点阵(英语:reciprocal lattice),又称倒(易)晶格、倒(易)格子,是物理学中描述空间波函数的傅立叶变换后的周期性的一种方法。相对于正晶格所描述的实空间周期性,倒晶格描述的是动量空间,亦可认为是k空间的周期性。根据位置和动量所满足的庞特里亚金对偶性,布拉菲晶格的倒晶格仍然是一种布拉菲晶格,而倒晶格的倒晶格就会变回原始晶格(正晶格)。

对于以 a {\displaystyle {\boldsymbol {a}}} 为基矢的一维晶格,其倒格子的基矢为

对于以 ( a 1 , a 2 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}})} 为基矢的二维晶格,定义其二维平面法线向量为 n {\displaystyle {\boldsymbol {n}}} ,其倒格子的基矢为

对三维晶格而言,我们定义素晶胞的基矢 ( a 1 , a 2 , a 3 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}},{\boldsymbol {a_{3}}})} ,可以用下列公式决定倒晶格的晶胞基矢 ( b 1 , b 2 , b 3 ) {\displaystyle ({\boldsymbol {b_{1}}},{\boldsymbol {b_{2}}},{\boldsymbol {b_{3}}})}

倒晶格与正晶格的基矢满足以下关系

定义三维中的倒晶格向量G

其中hkl为密勒指数,向量G的模长与正晶格的晶面间距有以下关系

向量G和正晶格向量R有以下关系

三维倒晶格中的晶胞体积ΩG和正晶格的晶胞体积Ω有以下关系

在此以一维晶格为例。在一个以 a {\displaystyle {\boldsymbol {a}}} 为基矢的一维晶格中,其波函数应该为布洛赫波

定义其倒晶格向量

以及一个函数

由于 u k ( x ) {\displaystyle u_{\boldsymbol {k}}({\boldsymbol {x}})} 是一个布洛赫波包,满足

所以

也是一个布洛赫波包。则波函数有以下性质

可见,倒晶格向量G描述了波函数在以k为基矢的动量空间(k空间)内的周期性。其向量单位,即倒晶格的基矢 b i {\displaystyle {\boldsymbol {b_{i}}}} 是描述k空间中平移对称性的基矢。其最小可重复单位,即倒晶格的晶胞,称为第一布里渊区。由于波矢k和动量与波函数对应的能量密切相关,在能带理论中也用来解释能带的周期性。

晶体衍射满足布拉格定律

定义入射波波矢为 k {\displaystyle {\boldsymbol {k}}} ,则上述公式可变换为

因此满足布拉格定律的晶体衍射反映的不是正晶格,而是倒晶格。

进一步将以上公式转化为向量形式,定义入射波波矢为 k i {\displaystyle {\boldsymbol {k_{i}}}} ,反射波波矢为 k o {\displaystyle {\boldsymbol {k_{o}}}} ,可以得到

这个形式也和劳厄方程式相符。

简单立方晶体的素格子基矢可以写成

体积为

可推得倒晶格的素格子基矢

所以简单立方晶体的倒晶格同样为简单立方晶体,但是晶格常数为 2 π a {\displaystyle 2\pi \over a}

面心立方晶体的素格子基矢可以写成下列三项

体积为

可推得倒晶格之素格子基矢

面心立方晶体的倒晶格为体心立方晶体。

体心立方晶体的素格子基矢可以写成下列三项

体积为

可推得倒晶格之素格子基矢

可得知体心立方晶体之倒晶格为面心立方晶体。

在布拉菲晶格中,三轴互为九十度的 ( a 1 , a 2 , a 3 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}},{\boldsymbol {a_{3}}})} (立方, 正方, 斜方)的晶体结构,是很容易被证明其倒晶格空间之三轴 ( b 1 , b 2 , b 3 ) {\displaystyle ({\boldsymbol {b_{1}}},{\boldsymbol {b_{2}}},{\boldsymbol {b_{3}}})} 与其真实晶格之三轴有垂直的关系.


相关

  • 奈瑟菌属N. animalis N. bacilliformis N. canis N. cinerea N. dentiae N. elongata N. europea N. flava N. flavescens 淋病奈瑟菌(N. gonorrhoeae) N. iguanae N. lactamica N.
  • 翼龙目见翼龙目的分类翼龙目(学名:Pterosauria),希腊文意思为“有翼的蜥蜴”,是一个飞行爬行动物的演化支。翼龙类生存于三叠纪晚期到白垩纪末期,约2亿1,600万年前到6,600万年前。翼龙类
  • 法国国立现代艺术美术馆国立现代艺术博物馆(法语:Musée National d'Art Moderne)是法国的国家现代美术的博物馆,为庞毕度国家艺术和文化中心的组成部分,主要展区位于巴黎第四区的庞毕度中心。博物馆的
  • 宇宙的终极命运宇宙的终极命运是物理宇宙学中一个主要的议题。许多科学理论都对宇宙的命运作出预测并成为竞争的对手,包括未来与时间是有限还是无限。自从宇宙起源于大爆炸并经历暴胀的概念
  • 市区市区(英语:urban area, urban agglomeration),又称城区,是指和周边地区相较之下,有着人口密度较高、人类活动特征较发达的区域。在行政划分上,市区可能是市、镇,或是由多个行政区域
  • 威卡教威卡教(英语:Wicca)是一种在英国和美国盛行的、新兴的、多神论的、以巫术为基础的宗教。威卡教的信徒自称自己的宗教为“老宗教”(这个称呼可以追溯到弗里德里希·施莱格尔)或者
  • 桂河大桥《桂河大桥》(英语:The Bridge on the River Kwai)是获得奥斯卡最佳影片等七项大奖的第二次世界大战题材影片,发行于1957年,亚历·坚尼斯等主演,大卫·连导演。《桂河大桥》的电影
  • 赤德松赞赤德松赞(藏语:.mw-parser-output .uchen{font-family:"Qomolangma-Dunhuang","Qomolangma-Uchen Sarchen","Qomolangma-Uchen Sarchung","Qomolangma-Uchen Suring","Qomolan
  • 卫生局中国人民解放军军徽中央军委机关事务管理总局卫生局,位于北京市,是中央军事委员会机关事务管理总局下属局,负责中央军委机关的卫生工作。在深化国防和军队改革中,2016年1月组建
  • 希腊总统)俗称为希腊总统,是希腊国家元首。总统由希腊议会选举产生;自1986年宪法改革以来,这个角色属象征式、无实权的元首。现任总统为卡特琳娜·萨凯拉罗普卢,自2020年3月13日就任。 爱