倒易点阵

✍ dations ◷ 2025-08-13 05:13:46 #晶体学,几何学,傅里叶分析,晶格点,衍射

倒易点阵(英语:reciprocal lattice),又称倒(易)晶格、倒(易)格子,是物理学中描述空间波函数的傅立叶变换后的周期性的一种方法。相对于正晶格所描述的实空间周期性,倒晶格描述的是动量空间,亦可认为是k空间的周期性。根据位置和动量所满足的庞特里亚金对偶性,布拉菲晶格的倒晶格仍然是一种布拉菲晶格,而倒晶格的倒晶格就会变回原始晶格(正晶格)。

对于以 a {\displaystyle {\boldsymbol {a}}} 为基矢的一维晶格,其倒格子的基矢为

对于以 ( a 1 , a 2 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}})} 为基矢的二维晶格,定义其二维平面法线向量为 n {\displaystyle {\boldsymbol {n}}} ,其倒格子的基矢为

对三维晶格而言,我们定义素晶胞的基矢 ( a 1 , a 2 , a 3 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}},{\boldsymbol {a_{3}}})} ,可以用下列公式决定倒晶格的晶胞基矢 ( b 1 , b 2 , b 3 ) {\displaystyle ({\boldsymbol {b_{1}}},{\boldsymbol {b_{2}}},{\boldsymbol {b_{3}}})}

倒晶格与正晶格的基矢满足以下关系

定义三维中的倒晶格向量G

其中hkl为密勒指数,向量G的模长与正晶格的晶面间距有以下关系

向量G和正晶格向量R有以下关系

三维倒晶格中的晶胞体积ΩG和正晶格的晶胞体积Ω有以下关系

在此以一维晶格为例。在一个以 a {\displaystyle {\boldsymbol {a}}} 为基矢的一维晶格中,其波函数应该为布洛赫波

定义其倒晶格向量

以及一个函数

由于 u k ( x ) {\displaystyle u_{\boldsymbol {k}}({\boldsymbol {x}})} 是一个布洛赫波包,满足

所以

也是一个布洛赫波包。则波函数有以下性质

可见,倒晶格向量G描述了波函数在以k为基矢的动量空间(k空间)内的周期性。其向量单位,即倒晶格的基矢 b i {\displaystyle {\boldsymbol {b_{i}}}} 是描述k空间中平移对称性的基矢。其最小可重复单位,即倒晶格的晶胞,称为第一布里渊区。由于波矢k和动量与波函数对应的能量密切相关,在能带理论中也用来解释能带的周期性。

晶体衍射满足布拉格定律

定义入射波波矢为 k {\displaystyle {\boldsymbol {k}}} ,则上述公式可变换为

因此满足布拉格定律的晶体衍射反映的不是正晶格,而是倒晶格。

进一步将以上公式转化为向量形式,定义入射波波矢为 k i {\displaystyle {\boldsymbol {k_{i}}}} ,反射波波矢为 k o {\displaystyle {\boldsymbol {k_{o}}}} ,可以得到

这个形式也和劳厄方程式相符。

简单立方晶体的素格子基矢可以写成

体积为

可推得倒晶格的素格子基矢

所以简单立方晶体的倒晶格同样为简单立方晶体,但是晶格常数为 2 π a {\displaystyle 2\pi \over a}

面心立方晶体的素格子基矢可以写成下列三项

体积为

可推得倒晶格之素格子基矢

面心立方晶体的倒晶格为体心立方晶体。

体心立方晶体的素格子基矢可以写成下列三项

体积为

可推得倒晶格之素格子基矢

可得知体心立方晶体之倒晶格为面心立方晶体。

在布拉菲晶格中,三轴互为九十度的 ( a 1 , a 2 , a 3 ) {\displaystyle ({\boldsymbol {a_{1}}},{\boldsymbol {a_{2}}},{\boldsymbol {a_{3}}})} (立方, 正方, 斜方)的晶体结构,是很容易被证明其倒晶格空间之三轴 ( b 1 , b 2 , b 3 ) {\displaystyle ({\boldsymbol {b_{1}}},{\boldsymbol {b_{2}}},{\boldsymbol {b_{3}}})} 与其真实晶格之三轴有垂直的关系.


相关

  • 依法利珠单抗依法利珠单抗(Efalizumab,药品商品名为 Raptiva,瑞体肤,默克)是牛皮癣的治疗用药,是一种抗CD11a的单克隆抗体制剂,其作用机制是辨识白血球上的CD11a抗原,使白血球与其他细胞附着的能
  • United States Geological Survey美国地质调查局(英语:United States Geological Survey,缩写:USGS)是美国内政部辖下的科学机构,是内政部唯一一个纯粹的科学部门,有约一万名人员,总部设在弗吉尼亚州里斯顿,在科罗拉
  • 几何结构在几何学中,凸正多面体,又称为柏拉图立体,是指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体,是一种三维的正几何形状,符合这种特性的立体总共只有5种。在汉
  • 碧姬·芭铎碧姬·芭铎(法语:Brigitte Bardot,法语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000",
  • 维持和平联合国维持和平部队(英语:United Nations Peacekeeping Force)简称联合国维和部队,指由大会或联合国安全理事会至少需九票赞成(必须包括五个常任理事国)核准部署并决定其任务授权
  • 窦房节律在一周期的心脏律动中,如果心肌的去极化从窦房结开始,则称为窦性心律(英文:sinus rhythm)。其特点是心电图(ECG)中展示方向正确的P波(英语:P wave (electrocardiography))。窦性心律是
  • 德沃夏克安东宁·利奥波德·德沃夏克(捷克语:Antonín Leopold Dvořák,1841年9月8日-1904年5月1日)生于布拉格(当时属于奥匈帝国,现属于捷克)附近的内拉霍奇夫斯镇(英语:Nelahozeves)伏尔塔瓦
  • 金凤鸟金凤鸟属(学名:Jinfengopteryx)是手盗龙类恐龙的一属,身长约55厘米。属名是以中国神话中的金凤凰来命名。化石是发现于中国河北省的花吉营组(Huajiying Formation)的桥头段,地层年
  • 美国第2本列表列出美国人口最多的建制区。根据美国人口调查局的定义,建制区可以有多种形式,包括市、镇、村和自治市镇。这些名称及其用法各州皆有很大区别。美国最大的建制区多数是在
  • 二氧化钼二氧化钼是+4价钼的氧化物,化学式为MoO2。它是紫色的金属导体。它在自然界以罕见的秋格瑞诺夫矿(英语:tugarinovite)的形式存在。二氧化钼可以由下述方法制备:单晶可通过碘参与的