几何结构

✍ dations ◷ 2025-06-07 11:10:05 #几何结构
在几何学中,凸正多面体,又称为柏拉图立体,是指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体,是一种三维的正几何形状,符合这种特性的立体总共只有5种。在汉语文化中,正多面体通常是指只有5种的凸正多面体,然而在只讨论每面全等、每个个角等角且每条边等长的情况下,亦有其他多种几何结构存在,也称为正多面体。正多面体的别称柏拉图立体是因柏拉图而命名的。柏拉图的朋友泰阿泰德告诉柏拉图这些立体,柏拉图便将这些立体写在《蒂迈欧篇》(Timaeus) 内。正多面体的作法收录《几何原本》的第13卷。在命题13描述正四面体的作法;命题14为正八面体作法;命题15为立方体作法;命题16则是正二十面体作法;命题17则是正十二面体作法。判断正多面体的依据有三条这三个条件都必须同时满足,否则就不是正多面体,比如五角十二面体,虽然和正十二面体一样是由十二个五角形围成的,但是由于它的各个顶角并不等价因此不是正多面体。正多面体具有很高的对称形,每个正多面体是相似多面体所属点群中对称性最高的,对正多面体加以变化就会导致对称性下降,如正十二面体属于Ih点群,当它变化为五角十二面体的时候对称性也随之下降为Td群。凸正多面体共有五个,均由古希腊人发现:(表中a为正多面体的边长)体积: 1 12 2 a 3 {displaystyle {1 over 12}{sqrt {2}}a^{3}} ≈ 0.118 a 3 {displaystyle approx 0.118a^{3}} 二面角角度: arccos ⁡ 1 3 {displaystyle arccos {frac {1}{3}}} ≈ 70 ∘ 52 ′ {displaystyle approx 70^{circ }52'} 外接球半径: 6 4 a {displaystyle {frac {sqrt {6}}{4}}a} ≈ 0.612 a {displaystyle approx 0.612a} 内切球半径: 6 12 a {displaystyle {frac {sqrt {6}}{12}}a} ≈ 0.204 a {displaystyle approx 0.204a} 对偶多面体:正四面体体积: a 3   {displaystyle a^{3} } 二面角角度: 90 ∘ {displaystyle 90^{circ }} 外接球半径: 3 4 a {displaystyle {sqrt {frac {3}{4}}}a} ≈ 0.866 a {displaystyle approx 0.866a} 内切球半径: a 2 {displaystyle {frac {a}{2}}} 对偶多面体:正八面体体积: 2 3 a 3 {displaystyle {frac {sqrt {2}}{3}}a^{3}} ≈ 0.471 a 3 {displaystyle approx 0.471a^{3}} 二面角角度: arccos ⁡ ( − 1 3 ) {displaystyle arccos left(-{frac {1}{3}}right)} ≈ 109 ∘ 28 ′ {displaystyle approx 109^{circ }28'} 外接球半径: a 2 {displaystyle {frac {a}{sqrt {2}}}} ≈ 0.707 a {displaystyle approx 0.707a} 内切球半径: a 6 {displaystyle {frac {a}{sqrt {6}}}} ≈ 0.408 a {displaystyle approx 0.408a} 对偶多面体:立方体体积: 1 4 ( 15 + 7 5 ) a 3 {displaystyle {1 over 4}(15+7{sqrt {5}})a^{3}} ≈ 7.663 a 3 {displaystyle approx 7.663a^{3}} 二面角角度: arccos ⁡ ( − 5 5 ) {displaystyle arccos {bigg (}{-{frac {sqrt {5}}{5}}}{bigg )}} ≈ 116 ∘ 57 ′ {displaystyle approx 116^{circ }57'} 外接球半径: 6 4 3 + 5 a {displaystyle {frac {sqrt {6}}{4}}{sqrt {3+{sqrt {5}}}}a} ≈ 1.401 a {displaystyle approx 1.401a} 内切球半径: a 4 50 + 22 5 5 {displaystyle {frac {a}{4}}{sqrt {frac {50+22{sqrt {5}}}{5}}}} ≈ 1.114 a {displaystyle approx 1.114a} 对偶多面体:正二十面体体积: 5 12 ( 3 + 5 ) a 3 {displaystyle {5 over 12}(3+{sqrt {5}})a^{3}} ≈ 2.182 a 3 {displaystyle approx 2.182a^{3}} 二面角角度: arccos ⁡ ( − 5 3 ) {displaystyle arccos {bigg (}{-{frac {sqrt {5}}{3}}}{bigg )}} ≈ 138 ∘ 19 ′ {displaystyle approx 138^{circ }19'} 外接球半径: a 4 10 + 2 5 {displaystyle {frac {a}{4}}{sqrt {10+2{sqrt {5}}}}} ≈ 0.951 a {displaystyle approx 0.951a} 内切球半径: a 12 3 ( 3 + 5 ) {displaystyle {frac {a}{12}}{sqrt {3}}left(3+{sqrt {5}}right)} ≈ 0.756 a {displaystyle approx 0.756a} 对偶多面体:正十二面体因为正多面体的形状的骰子会较公平,所以正多面体骰子经常出现于角色扮演游戏。正四面体、立方体和正八面体,亦会自然出现于结晶体的结构。正多面体经过削角操作可以得到其他对称性类似的结构,比如著名的球状分子碳六十空间结构就是正二十面体经过削角操作得到的,称为截角二十面体。因此可以知道,碳六十分子所属的对称性群也是与正十二面体相同的Ih群。由于正多面体和由正多面体衍生的削角正多面体大多有很好的空间堆积性质,即可以在空间中紧密堆积,因此常常选择正多面体形或者削角正多面体形的盒子作为分子模拟计算的周期边界条件。除了上面提到的正十二面体,还有一种由五边形(其中四条边等长)构成的多面体——五角十二面体,五角十二面体是黄铁矿的一种可能的晶体外形,尽管五角十二面体是由五边形构成的,但并不是柏拉图体,它所属的对称性群也不是正十二面体的Ih群而是与黄铁矿内部结构一致的Th群。柏拉图视“四古典元素”为元素,其形状如正多面体中的其中四个。剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写:“神使用正十二面体以整理整个天空的星座。”柏拉图的学生亚里士多德添加了第五个元素——以太(希腊文:.mw-parser-output .Polytonic{font-family:"SBL BibLit","SBL Greek","EB Garamond","EB Garamond 12","Foulis Greek",Cardo,"Gentium Plus",Gentium,"Theano Didot","GFS Porson","New Athena Unicode",Garamond,"Palatino Linotype","Arial Unicode MS",Arial,"Lucida Grande",Tahoma,"Times New Roman","DejaVu Sans",FreeSerif,sans-serif,serif}Αιθήρ,拉丁转写:aithêr;拉丁文:aether),并认为天空是用此组成,但他没有将以太和正十二面体连系。约翰内斯·开普勒依随文艺复兴建立数学对应的传统,将五个正多面体对应五个行星——水星、金星、火星、木星和土星,同时它们本身亦对应了五个古典元素。所有正多面体的相关于顶点数 V、棱数 E 和面数 F 的性质都可以由每个面上的边(棱)的数目 p 和每个顶点出发的棱的数目 q 给出。由于每条棱有两个顶点又在两个面上,我们有另一个关系是欧拉公式:(这个不显然的事实可以通过多种途径证明。在几何拓扑中,这是因为球面的欧拉示性数是 2。) 上面三个等式可以解出 V, E和 F:注意交换 p 和 q 会交换 F 和 V 但 E 不变。正多面体只有五种这个定理是一个经典结果。下面给出了两个证明。注意这两个证明都只证明了正多面体至多有五种,这五种的存在性需要靠构造给出。下面的几何讨论和欧几里得在几何原本中给出的证明非常相似:纯粹的拓扑证明可以只利用正多面体的性质.关键在于 V − E + F = 2 {displaystyle V-E+F=2} 和 p F = 2 E = q V {displaystyle pF=2E=qV} .综合上面等式,我们有于是由于 E > 0 {displaystyle E>0} ,注意到 p 和 q 必须大于等于 3,我们可以容易地找到所有五组 (p, q):

相关

  • 刺激物刺激(英语:Irritation),是心理学或生理学的一种表现,心理学通常是指受某种情况的人类刺激下,如社交网站,受到担忧而产生抑郁等不良精神状况,亦含有长期性状况;生理学通常则指炎症或因
  • 萜烯萜烯(英语:terpene,简称萜,旧称䓝,词由松节油“turpentine”而来)是一系列萜类化合物的总称,属脂类,不溶于水,是分子式为异戊二烯(C5H8)的整数倍的烯烃类化合物。萜烯是一个庞大而多样
  • PreЄ前寒武纪(英语:Precambrian)是地质年代中,对于显生宙之前数个宙(eon)的非正式涵盖统称,原本正式的名称是隐生宙或隐生元(Cryptozoic eon),但后来拆分成冥古宙、太古宙与元古宙三个时代
  • 鹿鼠白足鼠属(Peromyscus),哺乳纲、啮齿目、仓鼠科的一属,而与白足鼠属(球鹿鼠)同科的动物尚有里约稻鼠属(里约稻鼠)、叶耳鼠属(沙叶耳鼠)、洞鼠属(粗毛洞鼠)、大耳攀鼠属(大耳攀鼠)等之数种哺
  • 疾病管制局卫生福利部疾病管制署(简称疾管署),是中华民国卫生福利部辖下的一个所属机关,负责建立现代化防疫体系。
  • 先天缺陷先天性障碍,又称先天性疾病、先天畸形、先天缺陷,是指发育中的胎儿因为遗传性疾病或发育环境等因素导致某个部位特征结构畸形,导致在婴儿出生时即有的病症,包括了身体(英语:Physic
  • 地表径流地表径流是指雨水或是冰雪融化后的水流经地表产生的水流。表面径流可能是因为土壤已经吸饱水,无法再吸收水分,或者是一些不透水的表面(例如屋顶或是路面(英语:Road surface))使水流
  • 全球变暖全球变暖,或称全球暖化,指的是在一段时间中,地球的大气和海洋因温室效应而造成温度上升的气候变化,为公地悲剧之一,而其所造成的效应称之为全球变暖效应。在2013年,政府间气候变化
  • 雄蕊雄蕊(stamen)是被子植物花的雄性生殖器,为雄花器(androecium)的一部分,作用是产生花粉。雄蕊轮状或螺旋状着生于花托上,位于花被内侧及雌花器外侧(霉草科中的少数成员为例外,其中最著
  • 尿苷二磷酸葡萄糖phosphate尿苷二磷酸葡萄糖(英语:Uridine diphosphate glucose,或 uracil-diphosphate glucose,UDP-葡萄糖)是一种核苷酸糖(英语:nucleotide sugar),涉及代谢过程中的糖基转移(英语:gly