置信区间

✍ dations ◷ 2025-11-24 06:00:56 #置信区间
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 革兰氏染色法革兰氏染色(英语:Gram Staining)是用来鉴别细菌的一种方法:这种染色法利用细菌细胞壁上的生物化学性质不同,可将细菌分成两类,即革兰氏阳性(英语:Gram Positive)与革兰氏阴性(英语:Gram
  • 射精射精是指精液(一般包含精子)从男性生殖道射出的过程,男性射精一般会伴随性高潮。对于男性而言,它是受到一连串性刺激后,最终会显现的现象,并是自然受精的重要一环。在部分罕有例子
  • 卡那霉素卡纳霉素(英语:Kanamycin)是一种氨基糖苷类抗生素,可以用于口服和静脉注射,对多种病菌感染有效,从卡那霉素链霉菌(Streptomyces kanamyceticus)中分离得到。卡那霉素能够抑制70S合成
  • 纵火癖纵火狂是一种有关控制冲动的障碍,其中患者反复无法抵抗故意纵火,以缓解紧张或获得满足。纵火狂不等同于纵火行为,纵火狂并不是为了经济或政治利益,而且对与火有相联的物件,例如消
  • 囊泡病毒科囊泡病毒科(Ascoviridae)是双链DNA病毒中的一个科,该类病毒主要感染无脊椎动物,下有一属:
  • 猫流感是一种在猫科动物发生的上呼吸道感染病。不过,现时普遍认为这个名称是错误命名,原因是猫流感一般并不是由流感病毒的感染而引起。相反的,它是一种综合征:一个用来泛指所有
  • 中大西洋区中大西洋州份(英语:Mid-Atlantic), 通常是指美国境内的在新英格兰和美国南大西洋地区之间的地区。根据不同来源,有不同的定义,它一般包括纽约州、新泽西州、宾夕法尼亚州、特拉华
  • 科学技术科技可以表示:
  • 低聚半乳糖低聚半乳糖(Galacto-oligosaccharides;简写作GOS)是寡糖的一种,又称为“半乳寡糖”,也是一种益生元,人体不能吸收,但可以促进大肠内益生菌的生长及活跃度,因此常于婴幼儿或成人的奶
  • 也门也门犹太人,是生活在也门的犹太人社群。他们的历史非常悠久,在圣经所罗门王时代已生活在也门,但在第一次中东战争后因反犹太主义高涨,以色列在1949年6月至1950年9月发起“魔毯行