首页 >
置信区间
✍ dations ◷ 2025-05-16 20:34:28 #置信区间
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量
X
{displaystyle {cal {X}}}
服从分布
F
{displaystyle {cal {F}}}
,又假设
θ
{displaystyle theta }
是
F
{displaystyle {cal {F}}}
的参数之一。假设我们的数据采集计划将要独立地抽样
n
{displaystyle n}
次,得到一个随机样本
{
X
1
,
…
,
X
n
}
{displaystyle {X_{1},ldots ,X_{n}}}
,注意这里所有的
X
i
{displaystyle X_{i}}
都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本
X
=
{
X
1
,
…
,
X
n
}
{displaystyle X={X_{1},ldots ,X_{n}}}
的一个函数,且不得依赖于任何未知参数)
u
(
X
1
,
…
,
X
n
)
,
v
(
X
1
,
…
,
X
n
)
{displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})}
满足
u
(
X
1
,
…
,
X
n
)
<
v
(
X
1
,
…
,
X
n
)
{displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})}
使得:则称
(
u
(
X
1
,
…
,
X
n
)
,
v
(
X
1
,
…
,
X
n
)
)
{displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)}
为一个用于估计参数
θ
{displaystyle theta }
的
1
−
α
{displaystyle 1-alpha }
置信区间,其中的,
α
{displaystyle alpha }
称为置信水平。接续随机样本版本的定义,现在,对于随机变量
X
{displaystyle {cal {X}}}
的一个已经观测到的样本
{
x
1
,
…
,
x
n
}
{displaystyle {x_{1},ldots ,x_{n}}}
,注意这里用小写x表记的
x
i
{displaystyle x_{i}}
都是已经观测到的数字,没有随机性了,定义基于数据的
1
−
α
{displaystyle 1-alpha }
置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定
u
=
−
∞
{displaystyle u=-infty }
或者
v
=
+
∞
{displaystyle v=+infty }
,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1
−
α
{displaystyle 1-alpha }
水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用"
±
{displaystyle pm }
"进行简记:1
−
α
{displaystyle 1-alpha }
水平的双边正态置信区间为:1
−
α
{displaystyle 1-alpha }
水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本
X
1
,
…
,
X
n
{displaystyle {X_{1},ldots ,X_{n}}}
,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边
1
−
α
{displaystyle 1-alpha }
水平置信区间,可以用来检验具有相应的显著水平为
α
{displaystyle alpha }
的双边对立假设,具体地说是如下检验:
正态分布总体,知道总体方差
σ
2
{displaystyle sigma ^{2}}
,在
α
{displaystyle alpha }
显著水平下检验:检验方法是:当且仅当相应的
1
−
α
{displaystyle 1-alpha }
水平置信区间不包含
μ
0
{displaystyle mu _{0}}
时拒绝零假设
H
0
{displaystyle H_{0}}例1中构造的双边
1
−
α
{displaystyle 1-alpha }
水平置信区间也可以用来检验如下两个显著水平为
α
/
2
{displaystyle alpha /2}
的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验
H
1
:
μ
>
μ
0
{displaystyle H_{1}:mu >mu _{0}}
,当且仅当双边置信区间的左端点大于
μ
0
{displaystyle mu _{0}}
时拒绝零假设。
相关
- 病毒包膜一个位于宿主细胞之外的独立、功能完全的病毒颗粒一些病毒拥有的包裹病毒体的脂肪泡一段DNA或RNA。如果把核苷酸比作字的话,那么基因就是由核苷酸写成的句子。基因会指导病毒
- 戴维·巴尔的摩戴维·巴尔的摩(英语:David Baltimore,1938年3月7日-),美国生物学家,1975年诺贝尔生理学或医学奖获得者之一。他是加州理工学院生物学教授,并曾在1997年到2006年期间担任校长。他还
- 金属工金属加工简称金工,是一种把金属物料加工生成独立零件、组件、或大型结构的工艺技术。该术语涵盖从大型船舶和桥梁到精密发动机部件和精美首饰的广泛工作。 因此,它包括相应的
- 中华民国十大死因列表此表搜集自西元2014年(民国103年)起,台湾年度十大死因。死因以导致死亡的原始病因为基准,由中华民国卫生福利部按年发布死因统计,目前系以国际疾病分类标准第 10 版(ICD-10)进行分
- 眼睛眼(亦称眼睛、目、目睭)是视觉的器官,可以感知光线,转换为神经中电化学的脉冲。比较复杂的眼睛是一个光学系统,可以收集周遭环境的光线,借由虹膜调整进入眼睛的强度,利用可调整的晶
- 心内膜心内膜(英语:endocardium)是位于心腔中的最深层的组织。其细胞在胚胎学与生物学观点上与位于血管的内皮细胞极为相似。
- 悬浊液在化学中,悬浊液(英语:Suspension)也称为“悬浮液”或“悬胶”,是指含有大到可以沉降的固体颗粒的非均相流体。在药剂学中混悬剂是指难溶性固体药物以微粒状态分散于分散介质中形
- PPM百万分率(英语:parts per million,缩写作ppm),定义为百万分之一,1ppm即是一百万分之一。可以用在衡量生产品质及医学、化学的计量上,例如对客户的出货ppm保证在30ppm以下,公司内制程
- 医院等级中国医院的等级划分是中华人民共和国卫生行政管理部门对其行政管辖范围内医疗机构的评审制度,包括了对医院资质的审核标准。目前中国实行三级医疗服务体系,各个等级分为甲、乙
- 细菌学细菌学(英语:bacteriology),一个以研究细菌为主的学科,是微生物学的分支。主要的工作是辨认细菌、培养细菌、分类细菌种属、找出细菌种属的特征。它跟微生物学,有时候会被人当成同