置信区间

✍ dations ◷ 2025-10-14 09:57:33 #置信区间
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量 X {displaystyle {cal {X}}} 服从分布 F {displaystyle {cal {F}}} ,又假设 θ {displaystyle theta } 是 F {displaystyle {cal {F}}} 的参数之一。假设我们的数据采集计划将要独立地抽样 n {displaystyle n} 次,得到一个随机样本 { X 1 , … , X n } {displaystyle {X_{1},ldots ,X_{n}}} ,注意这里所有的 X i {displaystyle X_{i}} 都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本 X = { X 1 , … , X n } {displaystyle X={X_{1},ldots ,X_{n}}} 的一个函数,且不得依赖于任何未知参数) u ( X 1 , … , X n ) , v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})} 满足 u ( X 1 , … , X n ) < v ( X 1 , … , X n ) {displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})} 使得:则称 ( u ( X 1 , … , X n ) , v ( X 1 , … , X n ) ) {displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)} 为一个用于估计参数 θ {displaystyle theta } 的 1 − α {displaystyle 1-alpha } 置信区间,其中的, α {displaystyle alpha } 称为置信水平。接续随机样本版本的定义,现在,对于随机变量 X {displaystyle {cal {X}}} 的一个已经观测到的样本 { x 1 , … , x n } {displaystyle {x_{1},ldots ,x_{n}}} ,注意这里用小写x表记的 x i {displaystyle x_{i}} 都是已经观测到的数字,没有随机性了,定义基于数据的 1 − α {displaystyle 1-alpha } 置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定 u = − ∞ {displaystyle u=-infty } 或者 v = + ∞ {displaystyle v=+infty } ,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1 − α {displaystyle 1-alpha } 水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用" ± {displaystyle pm } "进行简记:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:1 − α {displaystyle 1-alpha } 水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本 X 1 , … , X n {displaystyle {X_{1},ldots ,X_{n}}} ,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间,可以用来检验具有相应的显著水平为 α {displaystyle alpha } 的双边对立假设,具体地说是如下检验: 正态分布总体,知道总体方差 σ 2 {displaystyle sigma ^{2}} ,在 α {displaystyle alpha } 显著水平下检验:检验方法是:当且仅当相应的 1 − α {displaystyle 1-alpha } 水平置信区间不包含 μ 0 {displaystyle mu _{0}} 时拒绝零假设 H 0 {displaystyle H_{0}}例1中构造的双边 1 − α {displaystyle 1-alpha } 水平置信区间也可以用来检验如下两个显著水平为 α / 2 {displaystyle alpha /2} 的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验 H 1 : μ > μ 0 {displaystyle H_{1}:mu >mu _{0}} ,当且仅当双边置信区间的左端点大于 μ 0 {displaystyle mu _{0}} 时拒绝零假设。

相关

  • 麻腮风三联疫苗麻腮风三联疫苗(英语:Measles mumps and rubella vaccine, MMR),港澳台译为麻疹腮腺炎德国麻疹混合疫苗,,大陆简称麻腮风疫苗,是预防麻疹、腮腺炎、风疹(德国麻疹)的疫苗,由三种疾病病
  • University of Minnesota明尼苏达大学双城分校(英语:University of Minnesota, Twin Cities),是位于美国明尼苏达州双城区(即明尼阿波利斯及圣保罗)的一所公立大学,为明尼苏达大学系统历史最悠久,规模最大的
  • A50–A64ICD-10 第一章:某些传染病和寄生虫病,主要包括被视为具有可传播性和可传染性的疾病。肠道传染病(A00-A09)结核病(A15-A19)由特定动物传染的细菌性疾病(A20-A28)其他细菌性疾病(A30-A4
  • 法属波利尼西亚法属波利尼西亚(法语:Polynésie française,塔希提语:Pōrīnetia Farāni)是法国在南太平洋的海外集体和自治国,由几组波利尼西亚群岛组成,包括:马克萨斯群岛(即侯爵夫人群岛)、社会
  • 托卡马克托卡马克(Tokamak),又称环磁机,是一种利用磁约束来实现磁约束聚变的环性容器。达到稳定的等离子体均衡(英语:Plasma stability)需要围绕环面移动的螺旋形状的磁力线。托卡马克是磁
  • 废水废水即受外物污染,主要是人为污染(英语:Human impact on the environment)的水。都市的设计用复合(英语:Combined sewer)排污系统输送废水往污水处理厂作进一步处理。经处理的废水
  • 雌二醇雌二醇(Estradiol,E2)是卵巢分泌的类固醇激素。是主要的雌性激素,负责调节女性特征、附属性器官的成熟和月经-排卵周期,促进乳腺导管系统的产生。雌二醇等雌激素的血清浓度在月经
  • 索福克勒斯索福克勒斯(古希腊语:Σοφοκλῆς,前496年/前497年-前405年/前406年),古希腊剧作家,古希腊悲剧的代表人物之一,和埃斯库罗斯、欧里庇得斯并称古希腊三大悲剧诗人,他的第一部作品
  • 威廉·詹姆士威廉·詹姆斯(英语:William James,1842年1月11日-1910年8月26日),美国哲学家、心理学家。他的弟弟亨利·詹姆斯是著名作家。他和查尔斯·桑德斯·皮尔士一起建立了实用主义。威廉
  • 马格拉布犹太人马格里布犹太人是指中世纪时分布在非洲马格里布地区的犹太人。早在西班牙和葡萄牙的犹太人到来之前就已经有犹太社区存在于北非,最古老的犹太社区在罗马时期出现,可能早在古代