首页 >
置信区间
✍ dations ◷ 2025-04-26 12:04:34 #置信区间
在统计学中,一个概率样本的置信区间(英语:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知参数值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间(英语:Credible interval)(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。定义置信区间最清晰的方式是从一个随机样本出发。考虑一个一维随机变量
X
{displaystyle {cal {X}}}
服从分布
F
{displaystyle {cal {F}}}
,又假设
θ
{displaystyle theta }
是
F
{displaystyle {cal {F}}}
的参数之一。假设我们的数据采集计划将要独立地抽样
n
{displaystyle n}
次,得到一个随机样本
{
X
1
,
…
,
X
n
}
{displaystyle {X_{1},ldots ,X_{n}}}
,注意这里所有的
X
i
{displaystyle X_{i}}
都是随机的,我们是在讨论一个尚未被观测的数据集。如果存在统计量(统计量定义为样本
X
=
{
X
1
,
…
,
X
n
}
{displaystyle X={X_{1},ldots ,X_{n}}}
的一个函数,且不得依赖于任何未知参数)
u
(
X
1
,
…
,
X
n
)
,
v
(
X
1
,
…
,
X
n
)
{displaystyle u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})}
满足
u
(
X
1
,
…
,
X
n
)
<
v
(
X
1
,
…
,
X
n
)
{displaystyle u(X_{1},ldots ,X_{n})<v(X_{1},ldots ,X_{n})}
使得:则称
(
u
(
X
1
,
…
,
X
n
)
,
v
(
X
1
,
…
,
X
n
)
)
{displaystyle left(u(X_{1},ldots ,X_{n}),v(X_{1},ldots ,X_{n})right)}
为一个用于估计参数
θ
{displaystyle theta }
的
1
−
α
{displaystyle 1-alpha }
置信区间,其中的,
α
{displaystyle alpha }
称为置信水平。接续随机样本版本的定义,现在,对于随机变量
X
{displaystyle {cal {X}}}
的一个已经观测到的样本
{
x
1
,
…
,
x
n
}
{displaystyle {x_{1},ldots ,x_{n}}}
,注意这里用小写x表记的
x
i
{displaystyle x_{i}}
都是已经观测到的数字,没有随机性了,定义基于数据的
1
−
α
{displaystyle 1-alpha }
置信区间为:注意,置信区间可以是单边或者双边的,单边的置信区间中设定
u
=
−
∞
{displaystyle u=-infty }
或者
v
=
+
∞
{displaystyle v=+infty }
,具体前者还是后者取决于所构造的置信区间的方向。初学者常犯一个概念性错误,是将基于观测到的数据所同样构造的置信区间的置信水平,误认为是它包含真实未知参数的真实值的概率。正确的理解是:置信水平只有在描述这个同样构造置信区间的过程(或称方法)的意义下才能被视为一个概率。一个基于已经观测到的数据所构造出来的置信区间,其两个端点已经不再具有随机性,因此,类似的构造的间隔将会包含真正的值的比例在所有值中,其包含未知参数的真实值的概率是0或者1,但我们不能知道是前者还是后者。1
−
α
{displaystyle 1-alpha }
水平的正态置信区间为:以下为方便起见,只列出双边置信区间的例子,且区间中用"
±
{displaystyle pm }
"进行简记:1
−
α
{displaystyle 1-alpha }
水平的双边正态置信区间为:1
−
α
{displaystyle 1-alpha }
水平的双边正态置信区间为:一般来说,置信区间的构造需要先找到一个枢轴变量(Pivotal quantity,或称Pivot),其表达式依赖于样本以及待估计的未知参数(但不能依赖于总体的其它未知参数),其分布不依赖于任何未知参数。下面以上述例2为例,说明如何利用枢轴变量构造置信区间。对于一个正态分布的随机样本
X
1
,
…
,
X
n
{displaystyle {X_{1},ldots ,X_{n}}}
,可以证明(此证明对初学者并不容易)如下统计量互相独立:它们的分布是:所以根据t分布的定义,有于是反解如下等式左边括号中的不等式就得到了例2中双边置信区间的表达式。有时,置信区间可以用来进行参数检验。例如在上面的例1中构造的双边
1
−
α
{displaystyle 1-alpha }
水平置信区间,可以用来检验具有相应的显著水平为
α
{displaystyle alpha }
的双边对立假设,具体地说是如下检验:
正态分布总体,知道总体方差
σ
2
{displaystyle sigma ^{2}}
,在
α
{displaystyle alpha }
显著水平下检验:检验方法是:当且仅当相应的
1
−
α
{displaystyle 1-alpha }
水平置信区间不包含
μ
0
{displaystyle mu _{0}}
时拒绝零假设
H
0
{displaystyle H_{0}}例1中构造的双边
1
−
α
{displaystyle 1-alpha }
水平置信区间也可以用来检验如下两个显著水平为
α
/
2
{displaystyle alpha /2}
的单边对立假设:和检验方法是完全类似的,比如对于上述第一个单边检验
H
1
:
μ
>
μ
0
{displaystyle H_{1}:mu >mu _{0}}
,当且仅当双边置信区间的左端点大于
μ
0
{displaystyle mu _{0}}
时拒绝零假设。
相关
- 囊肿性纤维化囊肿性纤维化(英语:cystic fibrosis,缩写作 CF),亦称为囊性纤维化、囊肿性纤维变性、囊肿纤维症、纤维性囊肿或囊纤维变性,是一种常见的遗传疾病,此病症最常影响肺脏,但也常发生于胰
- 高碳酸血症高碳酸血症(英语:Hypercapnia)是血液中二氧化碳(CO2)水平异常升高的情况。二氧化碳是身体代谢的气态产物,通常通过肺排出体外。 高碳酸血症通常会引发增强呼吸和接触氧气反应,例
- 匹鲁卡品匹鲁卡品(INN:Pilocarpine)是一种药物,又名毛果芸香碱;是从毛果芸香属植物叶中提出的生物碱,是一种胆碱类之副交感神经促进剂,一般用于治疗原发性青光眼及口腔干燥。毛果芸香碱于18
- 寄生虫学寄生虫学是一门研究寄生虫与其宿主和两者之间关系的科学。寄生虫学属于生物学的范畴,寄生虫学不仅仅是厘清这些生物和环境之间的问题,还包括了他们生存的方式。这意思著寄生虫
- 地舌菌纲地舌菌纲(学名:Geoglossomycetes)是子囊菌门盘菌亚门的一个纲,为一个单型的分类元,其下只有地舌菌目(Geoglossales)一个单型目,而地舌菌目亦只有地舌菌科(Geoglossaceae)一个科。地舌
- 贬义贬义或贬义词语是指一个带有嘲弄或其他负面意义的字词或词组,一个词是否带有贬义,有时须视场合与对象而定。居多用于责骂、教训他人。在历史上,有许多原来带有贬义的用词经过了
- 南大西洋地区美国南大西洋地区(英语:South Atlantic States)是美国人口普查局所设的九个分区之一,包括了马里兰州、哥伦比亚特区、维吉尼亚州、南卡罗莱纳州、北卡罗莱纳州、乔治亚州和佛罗
- 土地在经济学中,土地(英语:land)概括了所有自然资源,包括地理位置、土壤、矿产、森林、渔业资源、水资源、空气质量、地球静止轨道、电磁波谱、太阳等。土地是一种生产要素,是所有商品
- 密度密度是指一物质单位体积下的质量,常用希腊字母ρ或是英文字母D(Density)表示。在数学上,密度定义为质量除以体积的商 。及物体的质量与体积的【比值】:其中ρ为密度,mass为质量,Vol
- 古典时代古典时代(或称为古典时期、古典古代、古风时期,英语:Classical antiquity)是对希腊罗马世界(英语:Greco-Roman world)(以地中海为中心,包括古希腊和古罗马等一系列文明)的长期文化史的