双曲线

✍ dations ◷ 2025-09-07 04:42:31 #双曲线
在数学中,双曲线(英语:hyperbola;希腊语:ὑπερβολή,意思是超过、超出)是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(称为焦点)的距离差是常数的点的轨迹。这个固定的距离差是 a {displaystyle a} 的两倍,这里的 a {displaystyle a} 是从双曲线的中心到双曲线最近的分支的顶点的距离。 a {displaystyle a} 还称为双曲线的半实轴。焦点位于贯轴上,它们的中间点称为中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得 B 2 > 4 A C {displaystyle B^{2}>4AC} ,这里的所有系数都是实数,并存在定义在双曲线上的点对 ( x , y ) {displaystyle (x,y)} 的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。前两个上面已经列出了:双曲线由分开两个焦点的两个分离的称为臂或分支的曲线构成。随着到焦点的距离的变大,双曲线就越逼近称为渐近线的两条线。渐近线交叉于双曲线的中点,并对于东西开口的双曲线有斜率 ± b a {displaystyle pm {frac {b}{a}}} ,对于北南开口的双曲线有斜率 ± a b {displaystyle pm {frac {a}{b}}} 。双曲线有个性质,出自一个焦点的射线反射于双曲线后看起来像是出自另一个焦点。双曲线的一个特殊情况是“等轴”或“直角”双曲线,它的渐近线交于直角。以坐标轴作为渐近线的直角双曲线由方程 x y = c {displaystyle xy=c} 给出,这里的 c {displaystyle c} 是常数。如果对双曲线方程交换 x {displaystyle x} 和 y {displaystyle y} ,得到它的共轭双曲线。共轭双曲线有同样的渐近线。中心位于 ( h , k ) {displaystyle (h,k)} 的左右开口的双曲线:中心位于 ( h , k ) {displaystyle (h,k)} 的上下开口的双曲线:实轴贯穿双曲线的中心并交双曲线两臂于它们的顶点(拐点)。焦点位于双曲线实轴的延长线上。虚轴贯穿双曲线中点并垂直于实轴。在两个公式中, a {displaystyle a} 是半实轴(在双曲线两臂之间沿着实轴测量的距离),而 b {displaystyle b} 是半虚轴。如果用双曲线的两个顶点的切线交渐近线形成一个矩形,在切线上的两边的长度是 2 b {displaystyle 2b} ,平行于实轴的两边的长度是 2 a {displaystyle 2a} ,注意 b {displaystyle b} 可以大于 a {displaystyle a} 。如果计算从双曲线上任意准线上的点到每个焦点的距离,这两个距离的差的绝对值总是 2 a {displaystyle 2a} 。离心率给出自:左右开口的双曲线的焦点是: ( h ± c , k ) {displaystyle left(hpm c,kright)} ,其中c给出自 c 2 = a 2 + b 2 {displaystyle c^{2}=a^{2}+b^{2}} 。上下开口的双曲线的焦点是: ( h , k ± c ) {displaystyle left(h,kpm cright)} ,其中c给出自 c 2 = a 2 + b 2 {displaystyle c^{2}=a^{2}+b^{2}} 。对于以直线 x = h {displaystyle x=h} 和直线 y = k {displaystyle y=k} 为渐近线的直角双曲线:这种双曲线最简单的例子是:左右开口的双曲线:上下开口的双曲线:上右下左开口的双曲线:上左下右开口的双曲线:在所有公式中,中心在极点,而 a {displaystyle a} 是半实轴和半虚轴。如同正弦和余弦函数给出椭圆的参数方程,双曲函数给出双曲线的参数方程。 左右开口的双曲线:或上下开口的双曲线:或在所有公式中, ( h , k ) {displaystyle (h,k)} 是双曲线的中点, a {displaystyle a} 是半实轴而 b {displaystyle b} 是半虚轴。焦点在 x {displaystyle x} 轴: x 2 a 2 − y 2 b 2 = 1 {displaystyle {frac {x^{2}}{a^{2}}}-{frac {y^{2}}{b^{2}}}=1}焦点在 y {displaystyle y} 轴: y 2 a 2 − x 2 b 2 = 1 {displaystyle {frac {y^{2}}{a^{2}}}-{frac {x^{2}}{b^{2}}}=1}焦线平行于 x {displaystyle x} 轴: y = ± b a x {displaystyle y=pm {frac {b}{a}}x}焦线平行于 y {displaystyle y} 轴: y = ± a b x {displaystyle y=pm {frac {a}{b}}x}ρ = e p 1 + e cos ⁡ θ {displaystyle rho ={frac {ep}{1+ecos theta }}}当 e > 1 {displaystyle e>1} 时,表示双曲线。其中 p {displaystyle p} 为焦点到准线距离, θ {displaystyle theta } 为弦与 x {displaystyle x} 轴夹角。

相关

  • 精神医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学精神病学目前是一门医学专科,内容是关
  • 田纳西河谷管理局田纳西河谷管理局(英语:Tennessee Valley Authority),简称TVA,成立于1933年5月,总部位于美国田纳西州诺克斯维尔,是大萧条时代美国总统富兰克林·德拉诺·罗斯福所推动的新政中专责
  • 技术官僚专家统治(Technocracy),是一种由在技术上拥有高水平的专家控制一切决策的政体。在这种政体中,拥有知识和技术的科学家与工程师取代了传统政体中政治家,商人和经济学家的地位。在
  • 壳层电子层,或称电子壳或电子壳层,是原子物理学中,一组拥有相同主量子数n的原子轨道。电子层组成为一粒原子的电子序。这可以证明电子层可容纳最多电子的数量为
  • 研磨研磨是一种将固体物质化为较小颗粒的单元操作。为了研磨不同物质,人类会使用各种研磨器,包括手动的臼、由动物、风力或水力推动的磨坊、以及由电力驱动的电磨等。在研磨作用下
  • 人格异常人格障碍(英语:personality disorders),或人格(性格)疾患/异常/违常。是精神疾病中,对于一群特定拥有长期而僵化思想及行为病患的分类。这类疾患常可因其人格和行为的问题而导致社会
  • 拉沙热拉沙热(英语:Lassa fever)或拉沙出血热(英语:Lassa hemorrhagic fever, LHF),台湾译为拉萨热,是一种由拉沙病毒(英语:Lassa virus)所引起的病毒性出血热。为生物性危害第四级病毒,大部分
  • 錱常在錱常在(18世纪-1859年),戴氏,正白旗披甲人吉禄之嫡女。包衣管领下辛者库人。咸丰帝之常在。錱常在的生年不详,生母是吉禄的原配,惟早逝。吉禄在嫡女錱常在入宫之后,续娶一个女子为妻
  • 布丽·拉尔森布丽·拉尔森(英语:Brie Larson,1989年10月1日-),本名布莉安·希唐妮·特桑尼尔斯(英语:Brianne Sidonie Desaulniers),是一位美国女演员和歌手。童年出道开始参演喜剧小品《The Tonig
  • 杨孚杨孚(?-?),字孝元,东汉时南海郡番禺漱珠岗下渡头村(今广州市海珠区赤岗街道下渡村)人。早年致力攻读经史,东汉章帝(76-88)时,参加朝廷的“贤良对策”,获授为议郎。汉和帝时,杨孚反对穷兵黩