听出鼓的形状

✍ dations ◷ 2025-04-02 18:19:40 #膜鸣乐器,算子理论,偏微分方程

从鼓的音色(即其泛音列),利用数学理论,来获取鼓膜形状的信息,谓之听出鼓的形状。美国数学月刊于 1966 年刊登了马克·卡克(英语:Mark Kac)的论文〈能否听出鼓的形状?〉,文题由利普曼·伯斯(英语:Lipman Bers)给出。此数学问题可回溯至赫尔曼·外尔。

卡克 1966 年的论文使此问题广为人知。他因为该论文于 1967 年获莱斯特·福特奖(英语:Paul R. Halmos – Lester R. Ford Award),并于 1968 年获肖夫内奖(英语:Chauvenet Prize)。

鼓膜可以振动的频率取决于其形状。假若已知形状,则可用亥姆霍兹方程求出频率。该些频率为空间(鼓膜)上的拉普拉斯算子的特征值。问题是单由该些频率是否能确定鼓膜的形状。例如,没有其他形状的鼓膜与正方形鼓膜有相同的泛音列。卡克未能得知是否存在两个不同的形状,其具有相同的泛音列。结果,在 1992 年,戈登、韦伯,以及沃尔珀特证得频率不能完成决定形状,解决了原来的问题。

更正式地,鼓视为边界钳紧的弹性膜,数学上表示成平面上的一个区域 . 设 λ 为其狄利克雷特征值(英语:Dirichlet eigenvalue):即以下拉普拉斯算子的狄利克雷问题

的特征值。两个区域若具有完全相同的特征根列,则称其等谱(英语:isospectral),或同音(英语:homophonic)。称为“同音”的原因是,该些狄利克雷特征值恰好是鼓所能发出的基调:其为钳紧边界的波动方程的解的傅立叶系数。

于是,可以将问题转述成:只知 之值,可以推导出 的何种性质?又或,更具体地,是否有两个不同形状但等谱的区域?

也可以从数个不同方向推广,提出同样的问题。其一,可将平面换成高维或黎曼流形,考虑其上的拉氏算子的狄利克雷问题。其二,可将拉氏算子换成其他椭圆算子,例如柯西-黎曼算子或狄拉克算子。其三,可考虑狄利克雷条件以外的其他边界条件,例如诺伊曼边界条件。相关课题属于谱几何(英语:Spectral geometry)的研究。

问题提出后,约翰·米尔诺很快观察到,恩斯特·维特(英语:Ernst Witt)的一条定理足以推出存在两个不同形状的 16 维环面,其具有相同的特征值。然而,原来的二维问题要待 1992 年才得到解决。当时,卡罗林·戈登(英语:Carolyn Gordon) , 大卫·韦伯 (数学家)(英语:David Webb (mathematician)) 和斯科特·沃尔珀特利用砂田方法(得名自砂田利一(英语:Toshikazu Sunada)), 在平面上构造了两个不同形状,但却具有同样特征值的区域。该些区域为凹多边形。其特征值相等的证明用到拉氏算子的对称性。彼得·布塞尔(英语:Jürg Peter Buser)与合作者推广了此想法,从而构造了若干类似的例子。因此,卡克原先问题的答案是否定的:对于许多形状,不能 听出鼓的形状,不过仍可推断出若干性质。

另一方面,史提夫·泽尔迪奇(英语:Steve Zelditch)证明,若将卡克的问题收窄到仅考虑边界解析的平面凸区域,则会得到肯定的答案。仍未知道是否存在两个非凸的解析区域具有同样的特征值,但已知的是,与某个给定区域等谱的所有区域组成的集合,在 C∞ 拓扑中是紧集。又例如,由郑氏特征值比较定理(英语:Cheng's eigenvalue comparison theorem)知,球面是谱刚的(英语:spectrally rigid, 即若有流形与之等谱,则其形状亦必与之相同)。此外,利用奥斯古德(Osgood)、菲利浦斯(Phillips)和萨纳克(Sarnak)的成果,可以证明固定亏格的黎曼面组成的模空间中,没有过任何点的连续等谱流,且该模空间在弗雷歇-施瓦茨拓扑(英语:Fréchet–Schwartz topology)下为紧。

外尔公式断言,可藉 λ 的增长速度推断鼓的面积 。定义 () 为小于 的特征值的数目,则可得

其中 是维数, 是 -维单位球的体积。外尔猜想迫近式的第二项将给出 的周长,即有

其中 表示周长(高维情况下则为表面积)。维克托·伊夫里(英语:Victor Ivrii)于 1980 年证明了上式对于某类边界光滑的流形适用,其不具由两个连续参数给出的一族测地线(例如球面则具有如此一族测地线)。

对于边界非光滑的情况,迈克尔·贝里于 1979 年猜想,修正值的量级应为

其中 为边界的豪斯多夫维数。宝乐沙 (法语:J. Brossard)和卡莫纳(法语:R. A. Carmona)推翻了此猜想,但提出应将豪斯多夫维数改成顶盒维数(即上计盒维数)。在平面上,边界维数为 1 的情况已获证(1993 年),但大多数高维情况被否证(1996 年),两个结论都是拉皮迪(法语::fr:Michel_Lapidus)和波默兰斯(英语:Carl Pomerance)的成果。

相关

  • 大篆陶文 ‧ 甲骨文 ‧ 金文 ‧ 古文 ‧ 石鼓文籀文 ‧ 鸟虫书 ‧ 篆书(大篆 ‧  小篆)隶书 ‧ 楷书 ‧ 行书 ‧ 草书漆书 ‧  书法 ‧ 飞白书笔画 ‧ 
  • 威廉·默多克威廉·麦克马斯特·默多克(英语:William McMaster Murdoch,1873年2月28日 – 1912年4月15日)是苏格兰海员,也是英国皇家邮轮泰坦尼克号一副和皇家海军后备队上尉。威廉·默多克出
  • 脊神经节背根神经节(或脊髓神经节也称为后根神经节),是一群位于脊髓后根神经的神经细胞体(神经节)。背根神经节包含传入感觉神经元的细胞体。背根神经节神经元的轴突被称为传入神经。在周
  • 国防军战争罪行德国政府曾在第二次世界大战之中组织并下令进行了多项战争犯罪行为。二战当中,纳粹德国政府实行的种族屠杀导致六百万犹太人死亡。大屠杀为其中最为知名的例子,与此同时也有数
  • 沾黏沾黏(英语:Adhesion)是组织或器官间所发生的纤维性组织,常见于手术区域。沾黏的纤维组织可以视为是体内的疤痕。如同疤痕,沾黏是手术后人体修复过程中会发生的一种自然现象。造成
  • 前田利祐前田利祐(1935年(昭和10年)11月6日-)是加贺前田家第18代当主。现任宫内厅委嘱掌典籍,同时兼任全国石川县人会连合会会长。关东东京石川县人会会长。长种 – 直知 – 直正 – 孝
  • 德赖马克施泰因山 (拉克斯山脉)坐标:47°42′31″N 15°42′55″E / 47.708658°N 15.715415°E / 47.708658; 15.715415德赖马克施泰因山(德语:Dreimarkstein),是奥地利的山峰,位于该国东南部,由施泰尔马克州负
  • 第1机动舰队 (日本海军)第一机动舰队(日语:第一機動艦隊/だいいちきどうかんたい  ?)是旧日本海军的一支舰队编制。舰队编制存续期间,主官由第三舰队司令长官兼任。第一机动舰队是日本海军历史上第一
  • 苏加诺-哈达国际机场苏加诺-哈达国际机场(印尼语:Bandar Udara Internasional Soekarno-Hatta,IATA代码:CGK;ICAO代码:WIII)位于印尼首都雅加达以西20公里,于1985年4月开始营运,名字来源于印尼开国总统苏
  • Wonder FestivalWonder Festival(日语:ワンダーフェスティバル)是日本的手办制造商海洋堂(日语:海洋堂)主办,为日本知名的大型手办展、同时也是世界上最大的手办展。通常简称为WF(ワンフェス)。Wonde