蛋白质体学

✍ dations ◷ 2025-02-23 14:13:08 #蛋白质体学
蛋白质组学(英语:proteomics,又译作蛋白质体学),是对蛋白质特别是其结构和功能的大规模研究,是在90年代初期,由Marc Wikins和学者们首先提出的新名词。更重要的是,基因组是相当稳定的实体,而蛋白质组通过与基因组的相互作用而不断发生着改变。一个生命体在其机体的不同部分以及生命周期的不同阶段,其蛋白表达可能存在巨大的差异。蛋白质组是由有机体或系统产生或修饰的整套蛋白质。 这随着时间和细胞或有机体经历的不同要求或压力而变化。蛋白质组学是一个跨学科的领域,它从人类基因组计划的遗传信息中受益匪浅,它还涵盖了新兴的科学研究和从细胞内蛋白质组成,结构和其独特活动模式的整体水平探索蛋白质组学。它是功能基因组学的重要组成部分。蛋白质组学研究的关键技术包括质谱分析、X射线晶体学、核磁共振和凝胶电泳。有两种蛋白质组学方法:活体样品研究和重组蛋白合成。在第二种情形下,用遗传工程方法来克隆待合成的DNA模板,以及把这些基因剪切到宿主细胞(典型的是细菌)中,后者被培养用于大规模蛋白表达。接着,被合成蛋白需要被从宿主细胞中提取和纯化。纯化的蛋白随后通过结晶(及X-射线晶体衍射)或核磁共振来确定其结构。在基因组学和转录组学之后,蛋白质组学是在生物系统研究的下一个步骤。它是比基因组更为复杂,因为生物的基因组或多或少还是恒定的,但是蛋白质是细胞和细胞各不相同,并且在时间上各不相同。在不同的细胞类型中独特的基因被表达,这意味着在细胞中所产生的即使是基本的蛋白质组也需要被鉴定。过去这种现象是通过RNA分析完成的,但发现它与蛋白质含量不相关。现在已知mRNA并不总是翻译成蛋白质,并且对于给定量的mRNA产生的蛋白质的量取决于它从中转录的基因和细胞的当前生理状态。蛋白质组学证实了蛋白质的存在并提供了存在数量的直接量度。不仅不同的mRNA翻译成不同的蛋白质,而且很多蛋白质被翻译后也在细胞中会有非常多样的化学修饰。这些化学修饰都对蛋白质的功能非常关键。磷酸化是一种最为常见的后翻译修饰。例如在很多细胞信号通路中,很多的生物酶以及结构蛋白都有磷酸化修饰,以此可以被更多其它的蛋白质识别。这种修饰常常发生在丝氨酸(serine)和苏氨酸(threonine)氨基酸上。该修饰可通过E3泛素链接酶来进行。被泛素化修饰的蛋白通常会被细胞进一步降解。这是一种很基本的蛋白调控基理。如果知道所有的被哪类泛素链接酶修饰的蛋白家族,那么通过研究细胞中各种泛素链接酶的表达水平可以间接的推导出细胞中对应蛋白的表达水平。还有很多其它的重要的修饰,例如甲基化修饰,乙酰基化修饰,糖基化修饰,氧化修饰,硝基化(英语:Nitrosylation)修饰等。细胞可以在不同时间或在不同条件下制备不同组的蛋白质,例如在发育,细胞分化,细胞周期或癌变。 如上所述,进一步增加蛋白质组复杂性,大多数蛋白质被经历广泛的翻译后修饰。因此,即使研究主题受到限制,“蛋白质组学”研究也可能很快变得复杂。 在更加雄心勃勃的环境中,例如当寻找特定癌症亚型的生物标记时,蛋白质组学科学家可能会选择研究来自多个癌症患者的多个血清样本,以最大限度地减少混杂因素并解释实验噪音。 因此,有时需要复杂的实验设计来解释蛋白质组的动态复杂性。在蛋白质组学中,有多种方法可以研究蛋白质。 通常,可以通过使用抗体(免疫测定)或质谱法检测蛋白质。 如果分析复杂的生物样品,需要在定量斑点印迹分析(quantitative dot blot analysis) (缩写:qdb)中使用非常特异的抗体,或者在检测步骤之前需要使用生化分离,因为样品中的分析物太多而无法进行 准确的检测和量化。人类基因和蛋白质研究的一个主要发展是鉴定用于治疗疾病的潜在新药。这依赖于基因组和蛋白质组信息来识别与疾病相关的蛋白质,然后计算机软件可以将其用作新药物的靶标。例如,如果某种蛋白质与疾病有关,则其3D结构提供了设计药物以干扰蛋白质作用的信息。适合酶的活性位点但不能被酶释放的分子使酶失活。这是新药物发现工具的基础,旨在寻找新的药物来灭活与疾病有关的蛋白质。由于发现个体之间存在遗传差异,研究人员希望利用这些技术开发出对个体更有效的个人化药物。蛋白质组学还用于揭示复杂的植物 - 昆虫相互作用,这有助于识别参与植物对食草动物的防御反应的候选基因。美国国立卫生研究院已将生物标记定义为“一种客观测量和评估的特征,作为正常生物过程,致病过程或对治疗干预的药理学反应的指标”。了解蛋白质组,每种蛋白质的结构和功能以及蛋白质-蛋白质相互作用的复杂性对于开发未来最有效的诊断技术和疾病治疗方法至关重要。 例如,蛋白质组学在鉴定候选生物标记物(体液中对诊断有价值的蛋白质),鉴定免疫应答靶向的细菌抗原以及鉴定可能的感染性或肿瘤性疾病的免疫组织化学标记物方面非常有用。蛋白质组学的一个有趣用途是使用特定的蛋白质生物标志物来诊断疾病。 许多技术允许测试在特定疾病期间产生的蛋白质,这有助于快速诊断疾病。 技术包括西方墨点法,免疫组织化学染色,酶联免疫吸附试验(ELISA)或质谱法。 分泌蛋白质组学(英语:Secretomics)(Secretomics)是利用蛋白质组学方法研究分泌蛋白(英语:Secretory protein)和分泌途径的蛋白质组学的子领域,最近已成为发现疾病生物标志物的重要工具。

相关

  • 单纯疱疹病毒Herpes simplex virus 1 (HSV-1) Herpes simplex virus 2 (HSV-2)单纯疱疹病毒(英语:herpes simplex virus; HSV) 1 和 2 (HSV-1 和 HSV-2),也叫人类单纯疱疹病毒 1 和 2 (HHV
  • 病原病原体(希腊语:πάθος pathos “痛苦”、“热情” 与 -γενής -genēs “生产者”),在生物学中,从最古老和最广泛的意义上说,就是任何可以产生疾病的事物。病原体也可以称
  • 刺激物刺激(英语:Irritation),是心理学或生理学的一种表现,心理学通常是指受某种情况的人类刺激下,如社交网站,受到担忧而产生抑郁等不良精神状况,亦含有长期性状况;生理学通常则指炎症或因
  • 萤光素萤光素(Luciferin,源于拉丁语:lucifer,意思是“光明带来者”,词根是:lux,“光明”的意思)是一个通用名称,泛指所有 在生物中发现,能产生生物光的化合物。萤光素一般透过由一种酶作催化
  • SSTAR小型、密封、便携式自控反应堆(英语:Small, Sealed, Transportable, Autonomous Reactor,缩写:SSTAR)是一种已提出的由美国劳伦斯利福摩尔国家实验室为主体设计及研发的一款设计
  • 柏柏尔犹太人柏柏尔犹太人(Berber Jews),是生活在摩洛哥阿特拉斯山地区说柏柏尔语的犹太人分支,人口3,000~9,000人。他们的起源不明,其中一个说法是一些人是改信犹太教的柏柏尔部落后人(在罗马
  • 吉尔·德勒兹吉尔·德勒兹(法语:Gilles Louis René Deleuze;1925年1月18日-1995年11月4日),法国后现代主义哲学家。德勒兹出生在法国首都巴黎,一九四四年中学毕业后进入巴黎索邦大学哲学系就读
  • 科塞尔阿尔布雷希特·科塞尔(Ludwig Karl Martin Leonhard Albrecht Kossel,1853年9月16日-1927年7月5日),生于罗斯托克,德国医生。科塞尔的工作范畴是生理化学,特别是组织和细胞的化学。
  • 东向移民运动东向移民运动(德语:Ostsiedlung,另名“日耳曼东扩”),是中世纪神圣罗马帝国内的日耳曼语族向东迁徙,进入中欧、东欧地区定居的过程。影响的区域从斯洛文尼亚至爱沙尼亚,向南进入特
  • 黄花夹竹桃属黄花夹竹桃属(学名:Thevetia)是夹竹桃科下的一个属,为灌木或小乔木植物。该属共有15种,分布于热带美洲和热带亚洲。