会圆术

✍ dations ◷ 2025-11-07 08:13:41 #会圆术
会圆术,是从《九章算术》的“方田”章所载的“弧田术”的基础发展而成的,并载于《梦溪笔谈》一书,但作著沈括并未给出这一公式的推导。所谓“会圆术”就是已知圆周,弓形的高和弦长,而求出弧长的方法。用“会圆术”来计算所得的只是近似值,但用“会圆术”来计算弧长,而算精确了沈括出的求弧长的近似公式:弧长≈ 2 h 2 r + c {displaystyle {frac {2h^{2}}{r}}+c}其中 r {displaystyle r} 为弧所在的圆之半径, c {displaystyle c} 为弧田的弦, h {displaystyle h} 为弓形的高。元代王询、郭守敬等人在推算《授时历》的过程中,曾应用会圆术推算“赤道积度”(太阳赤经余弧)和“赤道内外度”(太阳赤纬),类似欧美的球面三角形的公式,。但由于会圆术弧矢公式易出现误差,圆心角越大,误差越大,推得的周天直径不够精确,因而其结果也就不十分精确。而计算方法仅限于毕氏定理,不知利用三角函数的正切,由弧度求弦矢,计算过于繁琐。明朝末年制定《崇祯历书》则由徐光启直接引进西方数学。

相关

  • 子宫内膜炎子宫内膜炎(英语:Endometritis)是指发生于子宫内膜的炎症。子宫内膜炎分为急性与慢性两种,临床以前者较为常见,后著较为少见。急性子宫内膜炎是在子宫内膜腺体上有微脓肿或嗜中性
  • 广泛性焦虑症广泛性焦虑障碍(英语:Generalized Anxiety Disorder),是经常为小事而感到持续焦虑的状态,这种焦虑与周围任何特定的情景都没有关系,而一般是由过度的担忧引起。大部分人有时会感到
  • 叶是高等植物的营养器官,侧边发育自植物的茎的叶原基。叶内含有叶绿体,是植物进行光合作用的主要场所。同时,植物的蒸散作用是通过叶的气孔实现的。叶只出现在真正的茎上,即只有
  • 激酶在生物化学里,激酶是一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(受质)的酶;这一过程谓之磷酸化。一般而言,磷酸化的目的是“激活”或“能化”受质,增大它的能量,以使其可参
  • 波萝勉省波萝勉省(高棉语:ខេត្តព្រៃវែង,高棉语发音:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode",
  • 脑肿瘤脑瘤或颅内肿瘤(英语:Brain Cancer或Brain Tumour)是指脑内异常细胞的形成,定义为任何颅内肿瘤,发生的位置包括了脑本身各种细胞(神经元、胶质细胞、淋巴组织以及血管)、脑神经(许旺
  • RARA1DKF、​1DSZ、​3A9E、​3KMR、​3KMZ、​4DQM、​5K13591419401ENSG00000131759ENSMUSG00000037992P10276Q6I9R7P11416XM_011525096、NM_000964、NM_001024809、NM_001033
  • 美国宪法宪法正文I ∙ II ∙ III ∙ IV ∙ V ∙ VI ∙ VII其它修正案 XI ∙ XII ∙ XIII ∙ XIV ∙ XV XVI ∙ XVII ∙ XVIII ∙ XIX ∙ XX XXI ∙ XXII ∙ XXIII ∙
  • 阿普林县阿普林县(英语:Appling County)是美国佐治亞州的一个县。2000年,人口有17,419人。根据2005年人口普查,人口估计有17,954人。 县政府所在地位于巴克斯利。阿普林县是以1812年战争
  • 塞门扎格雷格·莱昂纳德·塞门扎(英语:Gregg Leonard Semenza,1956年7月1日-),美国医学家,知名于对生命系统如何利用、调节氧气的研究。他的团队发现HIF-1(缺氧诱导因子-1)所调控的基因能够