秦九韶算法

✍ dations ◷ 2025-04-26 12:50:08 #数值分析,算法,宋朝发明

秦九韶算法是中国南宋时期的数学家秦九韶表述求解一元高次多项式的值的算法——正负开方术。它也可以配合牛顿法用来求解一元高次多项式的根。

19世纪初,英国数学家威廉·乔治·霍纳(英语:William George Horner)重新发现并证明,后世称作霍纳算法(Horner's method、Horner scheme)。但是,19世纪英国传教士伟烈亚力 Alexander Wylie. (1815–1887) 最早对霍纳的发明权提出质疑。他在1852年著的《中国科学札记》(Jottings on the Science of the Chinese)一篇论文中,详细介绍秦九韶的正负开方术之后写道“读者不难认出这就是霍纳在1819年因为发表《解所有次方程》论文,被数学家奥古斯都·德·摩根评为‘必使其发明人因发现此算法而置身于重要发明家之列’的方法;我以为应该对霍纳的发明权提出辩驳。欧洲的朋友们可能会觉得意外,一位来自天朝帝国的竞争者,有更大的机会确立他的优先权”。此后,日本数学史家三上义夫在《中日数学史》一书中在详述秦九韶的正负开方术后写道:“谁能否认,霍纳的辉煌方法,至少在早于欧洲六百年之前,已经在中国运用了。”。三上义夫还最先指出,秦九韶算法起源于汉代《九章算术》的开方法。其后王玲和李约瑟有专文论述秦九韶算法起源于《九章算术》。前苏联数学史家尤什克维奇说“这是中国传统数学最伟大成就之一”,他还说印度人不知有此方法,而阿拉伯数学家可能从中国前人传入此方法。

下面以自今到古的顺序,列出早在霍纳之前对该算法的发现:

霍纳在1819年发表的《解所有次方程》论文中的算例,其算法程序和数字处理都远不及五百多年前的秦九韶有条理;秦九韶算法不仅在时间上早于霍纳,也比较成熟。

元代数学家李冶和朱世杰继承了秦九韶算法。

南宋数学家秦九韶将贾宪的增乘开方术推广,以求解任意高次方程的实数根的数值解。秦九韶的《数书九章》详细叙述用秦九韶算法求解二十六个二次到十次方程的的实数根的数值解,其中包含二十个二次方程,一个三次方程,四个四次方程和一个十次方程。;其中有些得到精确解;多数得近似解。

《数书九章》“《遥度圆城》”题列出一个十次方程,求解圆城的直径:

《数书九章》“《兴田求积》”题列出一个四次方程,

x 4 + 763200 x 2 40642560000 = 0 {\displaystyle -x^{4}+763200x^{2}-40642560000=0}

将方程式写成一般式 x 4 + 0 x 3 + 763200 x 2 + 0 x 40642560000 = 0 {\displaystyle -x^{4}+0x^{3}+763200x^{2}+0x-40642560000=0}

第一次估根~800;作y=x-800减根代换,估出根的第二位数字为y=40;经过第二次减根代换z=y-40后常数项抵消为0;得精确解 y=40;x=800+y=800+40=840。右图为用阿拉伯数字表示的解此四次方程的秦九韶程序图(c'、d'、e'是运算过程中的临时数,最终分别并入c、d、e)。

《数书九章》“《环田三积》”题列出另一个四次方程,

其中经过x=10x'扩根代换和 x'=y+2减根代换得

10000 y 4 80000 y 3 + 1284500 y 2 + 577800 y 324506.25 = 0 {\displaystyle -10000y^{4}-80000y^{3}+1284500y^{2}+577800y-324506.25=0}

再次作扩根变换令z=10y 得:

z 4 80 z 3 + 12845 z 2 + 57780 z 324506.25 = 0 {\displaystyle -z^{4}-80z^{3}+12845z^{2}+57780z-324506.25=0}

筹算程序:

得x~ 20 1298025 2362256 {\displaystyle 20{\frac {1298025}{2362256}}} 其中: 1298025 2362256 {\displaystyle {\frac {1298025}{2362256}}} 不等于0,其第一位有效数字=0.5;即商的下一位数字为5,商~20.5,按秦九韶程序的一般规则,运算须继续进行下去直到“实”=0为止;但秦九韶在商=20.5而止,因20.5的精确度已满足在相关问题的需要。

三上义夫特别指出(1)秦九韶在处理 x 4 + 15245 x 2 6262506.25 = 0 {\displaystyle -x^{4}+15245x^{2}-6262506.25=0} 这一类四次方程式时,绝非作为 x 2 {\displaystyle x^{2}} 的二次方程式来求解(所谓双二次方程),而是按四次方程来求解的。(2)秦九韶算法同样可以求出小数点后的数值,后来的中国数学家和日本数学正是这么做的。

设有 n + 1 {\displaystyle n+1} 项的 n {\displaystyle n} 次函数

f ( x ) = a n x n + a n 1 x n 1 + a n 2 x n 2 + . . . . . . + a 2 x 2 + a 1 x + a 0 {\displaystyle f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+......+a_{2}x^{2}+a_{1}x+a_{0}}


将前 n {\displaystyle n} 项提取公因子 x {\displaystyle x} ,得

f ( x ) = ( a n x n 1 + a n 1 x n 2 + a n 2 x n 3 + . . . . . . + a 2 x + a 1 ) x + a 0 {\displaystyle f(x)=(a_{n}x^{n-1}+a_{n-1}x^{n-2}+a_{n-2}x^{n-3}+......+a_{2}x+a_{1})x+a_{0}}


再将括号内的前 n 1 {\displaystyle n-1} 项提取公因子 x {\displaystyle x} ,得

f ( x ) = ( ( a n x n 2 + a n 1 x n 3 + a n 2 x n 4 + . . . . . . + a 2 ) x + a 1 ) x + a 0 {\displaystyle f(x)=((a_{n}x^{n-2}+a_{n-1}x^{n-3}+a_{n-2}x^{n-4}+......+a_{2})x+a_{1})x+a_{0}}


如此反复提取公因子 x {\displaystyle x} ,最后将函数化为

f ( x ) = ( ( ( a n x + a n 1 ) x + a n 2 ) x + . . . . . . + a 1 ) x + a 0 {\displaystyle f(x)=(((a_{n}x+a_{n-1})x+a_{n-2})x+......+a_{1})x+a_{0}}


f 1 = a n x + a n 1 {\displaystyle f_{1}=a_{n}x+a_{n-1}}

f 2 = f 1 x + a n 2 {\displaystyle f_{2}=f_{1}x+a_{n-2}}

f 3 = f 2 x + a n 3 {\displaystyle f_{3}=f_{2}x+a_{n-3}}

......

f n = f n 1 x + a 0 {\displaystyle f_{n}=f_{n-1}x+a_{0}}


f n {\displaystyle f_{n}} 即为所求

求当 x = 3 {\displaystyle x=3} f ( x ) = 2 x 3 6 x 2 + 2 x 1 {\displaystyle f(x)=2x^{3}-6x^{2}+2x-1\,} 的值。
反复提取公因子 x {\displaystyle x} 后,原函数可以写成 f 1 ( x ) = x ( x ( 2 x 6 ) + 2 ) 1 {\displaystyle f_{1}(x)=x(x(2x-6)+2)-1} 。建立下列系数表可以用来加快演算速度:

                               x                      0                                {\displaystyle x_{0}}   |                                 x                      3                                {\displaystyle x^{3}}                                   x                      2                                {\displaystyle x^{2}}                                    x                      1                                {\displaystyle x^{1}}                                   x                      0                                {\displaystyle x^{0}}     3 |   2    -6     2    -1    |        6      0    6      |----------------------        2    0      2    5

第四行中的数是表中本列上方两数之和。第三行的数字是x的值与左下方第四行数的乘积。第二行的数是多项式各项按照次数从大到小排列后的系数。表中右下角的数就是函数的值:5。

对于一个n次的多项式函数,用常规方法(用重复乘法计算幂,再把各项相加)计算出结果最多需要n次加法和 ( n 2 + n ) 2 {\displaystyle {\frac {(n^{2}+n)}{2}}} 次乘法。若用x迭代的方法计算幂则需要n次加法和2n+1次乘法。如果计算中的数值数据是以字节方式储存的,那么常规方法约需要x占用的字节的2n倍空间。

而使用秦九韶算法时,至多只需作n次加法和n次乘法,最多需要x占用的字节的n倍空间。

该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算;对于计算机程序算法而言,加法比乘法的计算效率要高很多,因此该算法仍有极大的意义,用于减少中央处理器运算时间。

相关

  • 恩夫韦地恩夫韦地(INN:Enfuvirtide),商品名福艾(Fuzeon),是一种融合抑制剂类抗艾滋病靶向药物,由美国的Trimeris公司与瑞士的罗氏公司合作开发。恩夫韦地于2003年得到美国食品药品监督管理局
  • 边界在字体排印学中,边界指的是某页文件中四周留白的部分,可方便辨认行的起点和终点。当文字是以左右对齐排列时,其会贴紧左侧和右侧的边界。在多数的文书处理软件中,边界的标准宽度
  • 马歇尔·沃伦·尼伦伯格马歇尔·沃伦·尼伦伯格(英语:Marshall Warren Nirenberg,1927年4月10日-2010年1月15日),美国生物化学家与遗传学家,因解出遗传密码而与罗伯特·W·霍利及哈尔·葛宾·科拉纳共同获
  • 黑糯米紫米是一种糯米,可用于制作紫米粥等甜点。 可与其他稻类杂交,因此与其他稻类无生殖隔离,属于稻类(oryza sativa L.)的亚种。黑米是一种籼米;但两者都是糙米。需要注意的地方是,紫米
  • 黥刑墨刑又称黥刑、黥面,是中国上古时代和朝鲜古代的一种刑罚,在犯人的脸上或额头上刺字(奴、婢、盗、贼)或图案,再染上墨,作为受刑人的标志。对犯人的身体状况实际影响不大,但是脸上的
  • 吴佩孚吴佩孚(1874年4月22日-1939年12月4日),字子玉,山东省蓬莱县人。晚清秀才,北洋军阀中曾经为实力最雄厚的军阀之一,并担任直系军阀的首领,官至直鲁豫巡阅使。清同治十三年(1874年)3月7日
  • 塞尔日·阿罗什塞尔日·阿罗什(法语:Serge Haroche,1944年9月11日-),法国物理学家、法兰西学院院士,美国国家科学院外籍院士,巴黎高等师范学院教授。他的博士论文导师是1997年诺贝尔物理学奖得主克
  • 赤松健赤松健(日语:あかまつ けん,1968年7月5日-)是日本的男性漫画家,东京都东久留米市人,出生于爱知县名古屋市。自高中起确立创作的志向,后来渐渐往漫画界发展。他凭着短篇漫画《短暂夏
  • 比亚布比亚布(Biabou)是加勒比海岛国圣文森特和格林纳丁斯圣文森特岛夏洛特区的一个城镇,位于该岛东海岸,秘鲁韦尔(英语:Peruvian Vale)以北和北尤宁以南,在连接首府乔治敦的沿海公路上。
  • 董石麟董石麟(1932年-),浙江杭州人,浙江大学教授,从事空间结构研究方向的教学、科研工作。1951年毕业于杭高,1955年毕业于同济大学结构工程系,1997年当选为中国工程院院士。2009年获浙江大