分治法

✍ dations ◷ 2025-12-06 06:24:32 #代数,算法

在计算机科学中,分治法是建基于多项分支递归的一种很重要的算法范式。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法(归并排序、快速排序)、傅立叶变换(快速傅立叶变换)。

另一方面,理解及设计分治法算法的能力需要一定时间去掌握。正如以归纳法去证明一个理论,为了使递归能够推行,很多时候需要用一个较为概括或复杂的问题去取代原有问题。而且并没有一个系统性的方法去适当地概括问题。

分治法这个名称有时亦会用于将问题简化为只有一个细问题的算法,例如用于在已排序的列中查找其中一项的折半搜索算法(或是在数值分析中类似的勘根算法)。这些算法比一般的分治算法更能有效地运行。其中,假如算法使用尾部递归的话,便能转换成简单的循环。但在这广义之下,所有使用递归或循环的算法均被视作“分治算法”。因此,有些作者考虑“分治法”这个名称应只用于每个有最少两个子问题的算法。而只有一个子问题的曾被建议使用减治法这个名称。

分治算法通常以数学归纳法来验证。而它的计算成本则多数以解递归关系式来判定。

折半搜索算法——一个将原来问题连逐地拆细成大约一半大小的单一子问题的分治算法——拥有一段悠长历史。虽然算法在计算机上的清楚描述出现在1946年约翰莫齐利(John Mauchly)的一篇文章里,然而利用已排序的对象序列去加快搜索的构想早已在公元前200年的巴比伦尼亚出现。另一个单一子问题的分治算法是找出2个数的最大公因数的辗转相除法(透过将数字化小至使子问题变得简单),于公元前数世纪已经出现。

一个早期有多个子问题的分治算法是高斯在1805年描述关于快速傅立叶奱换的算法,尽管他没有量化地分析它的操作数目,而快速傅立叶奱换直至在一世纪之后被重新发现之前亦没有广泛流传。这个算法现在称为库利-图基快速傅里叶变换算法。

至于专门用于计算机之上而且正确地分析的分治算法早期例子,则可以数到约翰·冯·诺伊曼于1945年发明的归并排序。

另一个显著的例子是Anatolii Alexeevitch Karatsuba于1960年发明在 O ( n log 2 3 ) {\displaystyle O(n^{\log _{2}3})} 步骤内将两个n位数相乘的Karatsuba算法。它反证了安德雷·柯尔莫哥洛夫于1956年认为这个乘法需要 Ω ( n 2 ) {\displaystyle \Omega (n^{2})} 步骤的猜想。

高德纳举了一个最初并没有涉及计算机的分治算法例子,就是一般邮局用于分发信件的方法:信件在主要邮局根据不同的地理范围而分到不同的袋里,每个袋亦在运送到地区邮局时分到更小的袋里,如是者直至信件被派发为止。这个方法与早于1929年的打孔卡排序机所用的基数排序相类同。

分治算法是一个解决复杂问题的好工具,它可以把问题分解成若干个子问题,把子问题逐个解决,再组合到一起形成大问题的答案。比如,汉诺塔问题如果采用分治算法,可以把高度为n的塔的问题转换成高度为n-1的塔来解决,如此重复,直至问题化简到可以很容易的处理为止。

人们发现有很多效率很高的分治算法,比如,Karatsuba快速乘法算法、快速排序算法和并行算法、矩阵乘法的施特拉森算法、快速傅里叶变换等。

在每一层递归上都有三个步骤:

分治法在高级语言中主要的一个思想是递归,LISP语言中的体现出了极丰富的分治法。

以下是归并排序C语言的示例代码,输入参数中,需要排序的数组为array,起始索引为first,终止索引为last。调用完成后,array中从first到last处于升序排列。

 void merge_sort(int array, unsigned int first, unsigned int last) { 	int mid = 0; 	if(first<last) 	{ 		mid = (first+last)/2; 		merge_sort(array, first, mid); 		merge_sort(array, mid+1,last); 		merge(array,first,mid,last); 	} }

在程序中可以看出分治法的应用:在merge_sort()中,将原来针对索引first到last的数组排序的问题,分为二份较小的问题

最后再进行二个数组的合并。

相关

  • 血癌白血病(拉丁语:leukemia,/luːˈkiːmiːə/)是一群癌症种类的统称,英文名称来自于古希腊语,λευκός(leukos,白色)与αἷμα(haima,血液)的组合。 它通常发病于骨髓,造成不正常白血
  • 消炎抗炎性(英语:Anti-inflammatory)指物质或治疗能减少炎症的特性。消炎药占约止痛药的一半。消炎药以消炎作用来减少疼痛,与鸦片类药物不同,后者影响中枢神经系统以阻断疼痛讯号传
  • 松鼠科松鼠科(学名:Sciuridae),是哺乳纲啮齿目一个科,其下包括松鼠亚科(Sciurinae)和非洲地松鼠亚科(Xerinae),特征是长著毛茸茸的长尾巴。本科和与其亲缘关系接近的动物组成松鼠形亚目(Sciur
  • 埃及总统阿拉伯埃及共和国总统是经选举产生的阿拉伯埃及共和国的国家元首。根据埃及宪法的相关规定,总统也是埃及武装力量的总司令和政府行政部门主管,任期四年,可以连任一次。现任总统
  • 酒后驾驶醉酒驾驶或酒后驾驶(英语:driving under the influence (of alcohol),常简写为DUI,中文简称醉驾、酒驾)是指在酒精、酒类饮品影响下控制并驾驶机动车辆(有时包括单车、有发动机、
  • 简略减数分裂简略减数分裂(Brachymeiosis)是子囊菌门真菌有性生殖中的一个假说,描述子囊菌在产生子囊时,比正常减数分裂多经过一次核聚变(英语:karyogamy)的过程。在此假说的描述中,子囊在产生子
  • 亚硝酰基Oxidonitrogen(1+)Iminooxidanium 亚硝基正离子亚硝酰基离子是NO + 。NO +容易与水反应形成亚硝酸:因此,NOBF 4必须防止水分或潮湿的空气。用碱,反应产生亚硝酸盐:NO +与芳
  • 冈格阿普尔冈格阿普尔(Gangapur),是印度马哈拉施特拉邦Aurangabad县的一个城镇。总人口22053(2001年)。该地2001年总人口22053人,其中男性11558人,女性10495人;0—6岁人口3291人,其中男1775人,女
  • 天主教凯希亚多里斯教区天主教凯希亚多里斯教区(拉丁语:Dioecesis Kaisiadorensis、立陶宛语:Kaišiadorių vyskupija)是罗马天主教在立陶宛的一个教区,属维尔纽斯总教区。成立于1926年4月4日。2004年
  • 布莱恩·巴宾布莱恩·巴宾(Brian Babin;1948年3月23日-),美国政治人物。自2015年开始,他是德克萨斯州第36选举区选出的美国众议院议员。他的党籍是共和党。巴宾早年曾于美国空军服役,官至上尉,在