一一对应

✍ dations ◷ 2025-09-18 10:57:23 #一一对应
数学中,一个由集合 X {displaystyle X} 映射至集合 Y {displaystyle Y} 的函数,若对每一在 Y {displaystyle Y} 内的 y {displaystyle y} ,存在唯一一个在 X {displaystyle X} 内的 x {displaystyle x} 与其对应,则此函数为双射函数。换句话说, f {displaystyle f} 是双射的,如果其为两集合间的一一对应。即,同时为单射和满射。例如,由整数集合 Z {displaystyle mathbb {Z} } 至 Z {displaystyle mathbb {Z} } 的函数 succ {displaystyle operatorname {succ} } ,其将每一个整数 x {displaystyle x} 连结至整数 succ ⁡ ( x ) = x + 1 {displaystyle operatorname {succ} (x)=x+1} ,这是一个双射函数;再看一个例子,函数 sumdif {displaystyle operatorname {sumdif} } ,其将每一对实数 ( x , y ) {displaystyle (x,y)} 连结至 sumdif ⁡ ( x , y ) = ( x + y , x − y ) {displaystyle operatorname {sumdif} (x,y)=(x+y,x-y)} ,这也是个双射函数。一双射函数亦简称为双射(英语:bijection)或排列。后者一般较常使用在 X = Y {displaystyle X=Y} 时。以由 X {displaystyle X} 至 Y {displaystyle Y} 的所有双射组成的集合标记为 X ↔ Y {displaystyle Xleftrightarrow Y} 。双射函数在许多数学领域扮演着很基本的角色,如在同构的定义(以及如同胚和微分同构等相关概念)、置换群、投影映射及许多其他概念的基本上。一函数 f {displaystyle f} 为双射的当且仅当其逆关系 f − 1 {displaystyle f^{-1}} 也是个函数。在这情况, f − 1 {displaystyle f^{-1}} 也会是双射函数。两个双射函数 f : X ↔ Y {displaystyle f:Xleftrightarrow Y} 及 g : Y ↔ Z {displaystyle g:Yleftrightarrow Z} 的复合函数 g ∘ f {displaystyle gcirc f} 亦为双射函数。其反函数为 ( g ∘ f ) − 1 = ( f − 1 ) ∘ ( g − 1 ) {displaystyle (gcirc f)^{-1}=(f^{-1})circ (g^{-1})} 。另一方面,若 g ∘ f {displaystyle gcirc f} 为双射的,可知 f {displaystyle f} 是单射的且 g {displaystyle g} 是满射的,但也仅限于此。一由 X {displaystyle X} 至 Y {displaystyle Y} 的关系 f {displaystyle f} 为双射函数当且仅当存在另一由 Y {displaystyle Y} 至 X {displaystyle X} 的关系 g {displaystyle g} ,使得 g ∘ f {displaystyle gcirc f} 为 X {displaystyle X} 上的恒等函数,且 f ∘ g {displaystyle fcirc g} 为 Y {displaystyle Y} 上的恒等函数。必然地,此两个集合会有相同的势。若 X {displaystyle X} 和 Y {displaystyle Y} 为有限集合,则其存在一两集合的双射函数当且仅当两个集合有相同的元素个数。确实,在公理集合论里,这正是“相同元素个数”的定义,且广义化至无限集合,并导致了基数的概念,用以分辨无限集合的不同大小。形式上,双射函数恰好是集合范畴内的同构。

相关

  • PubMedPubMed 是一个免费的搜索引擎,提供生物医学方面的论文搜索以及摘要。它的数据库来源为MEDLINE(英语:MEDLINE)。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其
  • 糖蛋白糖蛋白是一种含有寡糖链的蛋白质,两者之间以共价键相连。其中的寡糖链通常是经由共转译修饰或是后转译修饰过程中的糖基化作用而连结在蛋白质上。糖蛋白多肽链常携带许多短的
  • 输血相关急性肺损伤输血相关急性肺损伤(Transfusion related acute lung injury;TRALI)是一种会引发急性肺水肿的严重输血并发症。发生在输注含血浆的血液制品后6小时内,与输血暂时相关的急性肺损
  • 解离离解又称解离,在化学中,指化合物分裂而形成离子或原子团的过程。例如,醋酸(CH3COOH)溶于水,离子键断裂即形成醋酸根离子(CH3COO−)。而其中的氢原子则变为一个氢离子(实际上是一个质
  • 甲苯甲苯(法语:Toluène,德语: Toluol,英语:Toluene,IUPAC:Methylbenzene,分子式:C7H8),是一种无色,带特殊芳香味的易挥发液体。甲苯是芳香族碳氢化合物的一员,它的很多性质与苯很相像,在现今
  • 排气再循环又称废气再循环(Exhaust Gas Recirculation)乃汽车用小型内燃机在燃烧后将排出气体的一部分导入吸气侧使其再度吸气的技术(手法或方法),取其每个英语单字的字首“EGR”为通称,主要
  • 内酯内酯(英文:Lactone)即环状的酯,由一化合物中的羟基和羧基发生分子内缩合环化得到。内酯以五元(γ-内酯)及六元(δ-内酯)环内酯最为稳定,环内的角张力最小。4-羟基酸(R-CH(OH)-(CH2)2-C
  • 己酮糖己酮糖是分子中有酮基的己糖,主要有阿洛酮糖、果糖、山梨糖、塔格糖等。果聚糖:菊粉 · 果聚糖β2→6甘露聚糖:低聚木糖:半乳聚糖:
  • 国际癌症研究机构国际癌症研究机构(英语:International Agency for Research on Cancer,简称IARC)是世界卫生组织下属的一个跨政府机构,办公地点设在法国的里昂。该机构的主要任务是进行和促进对
  • 鼻冲洗鼻冲洗(英语:Nasal irrigation),又称鼻腔冲洗、鼻窦浇灌、鼻内冲洗、洗鼻、鼻窦盥洗,是清洁及稀释鼻腔内的过敏原、鼻涕、干掉的鼻涕及脏污的一种方法,可以缓解鼻塞、过敏性鼻炎、