一一对应

✍ dations ◷ 2025-04-04 18:20:33 #一一对应
数学中,一个由集合 X {displaystyle X} 映射至集合 Y {displaystyle Y} 的函数,若对每一在 Y {displaystyle Y} 内的 y {displaystyle y} ,存在唯一一个在 X {displaystyle X} 内的 x {displaystyle x} 与其对应,则此函数为双射函数。换句话说, f {displaystyle f} 是双射的,如果其为两集合间的一一对应。即,同时为单射和满射。例如,由整数集合 Z {displaystyle mathbb {Z} } 至 Z {displaystyle mathbb {Z} } 的函数 succ {displaystyle operatorname {succ} } ,其将每一个整数 x {displaystyle x} 连结至整数 succ ⁡ ( x ) = x + 1 {displaystyle operatorname {succ} (x)=x+1} ,这是一个双射函数;再看一个例子,函数 sumdif {displaystyle operatorname {sumdif} } ,其将每一对实数 ( x , y ) {displaystyle (x,y)} 连结至 sumdif ⁡ ( x , y ) = ( x + y , x − y ) {displaystyle operatorname {sumdif} (x,y)=(x+y,x-y)} ,这也是个双射函数。一双射函数亦简称为双射(英语:bijection)或排列。后者一般较常使用在 X = Y {displaystyle X=Y} 时。以由 X {displaystyle X} 至 Y {displaystyle Y} 的所有双射组成的集合标记为 X ↔ Y {displaystyle Xleftrightarrow Y} 。双射函数在许多数学领域扮演着很基本的角色,如在同构的定义(以及如同胚和微分同构等相关概念)、置换群、投影映射及许多其他概念的基本上。一函数 f {displaystyle f} 为双射的当且仅当其逆关系 f − 1 {displaystyle f^{-1}} 也是个函数。在这情况, f − 1 {displaystyle f^{-1}} 也会是双射函数。两个双射函数 f : X ↔ Y {displaystyle f:Xleftrightarrow Y} 及 g : Y ↔ Z {displaystyle g:Yleftrightarrow Z} 的复合函数 g ∘ f {displaystyle gcirc f} 亦为双射函数。其反函数为 ( g ∘ f ) − 1 = ( f − 1 ) ∘ ( g − 1 ) {displaystyle (gcirc f)^{-1}=(f^{-1})circ (g^{-1})} 。另一方面,若 g ∘ f {displaystyle gcirc f} 为双射的,可知 f {displaystyle f} 是单射的且 g {displaystyle g} 是满射的,但也仅限于此。一由 X {displaystyle X} 至 Y {displaystyle Y} 的关系 f {displaystyle f} 为双射函数当且仅当存在另一由 Y {displaystyle Y} 至 X {displaystyle X} 的关系 g {displaystyle g} ,使得 g ∘ f {displaystyle gcirc f} 为 X {displaystyle X} 上的恒等函数,且 f ∘ g {displaystyle fcirc g} 为 Y {displaystyle Y} 上的恒等函数。必然地,此两个集合会有相同的势。若 X {displaystyle X} 和 Y {displaystyle Y} 为有限集合,则其存在一两集合的双射函数当且仅当两个集合有相同的元素个数。确实,在公理集合论里,这正是“相同元素个数”的定义,且广义化至无限集合,并导致了基数的概念,用以分辨无限集合的不同大小。形式上,双射函数恰好是集合范畴内的同构。

相关

  • 卵菌见内文卵菌门(学名:Oomycota)或卵菌纲(学名:Oomycetes),俗称水霉 (water mold),是一种与真菌很相似的真核微生物,不具叶绿素,不进行光合作用,需将养分在体外分解后,再进行吸收。但根据亲
  • 消化不良消化不良(Dyspepsia或Indigestion)是一种临床症候群,是由胃动力障碍所引起的疾病,也包括胃蠕动不好的胃轻瘫和食道反流病,常见表现为上腹、胸部疼痛或肠胃不适,例如上腹痛、饱胀、
  • 积雨云积雨云(拉丁语:Cumulonimbus,符号:Cb),又名雷雨云,属于直展云族。积雨云可以单独从积云状态发展出来,也可能是伴随冷锋面产生的,通常会产生强阵性的降水,并伴有大风、雷暴等。积雨云是
  • 巴勒斯坦问题进行中持续中的冲突以色列-巴勒斯坦冲突是持续中的冲突,为阿以冲突及中东战争的一部分。巴以冲突不能够简单地概括为所有以色列犹太人与所有巴勒斯坦阿拉伯人之间的双边冲突
  • 4第4周期元素是元素周期表中第四行(即周期)的元素。含有:第1周期元素 - 第2周期元素 - 第3周期元素 - 第4周期元素 - 第5周期元素 - 第6周期元素 - 第7周期元素 - 第8周期元素
  • 曼吉斯套州曼格斯套州(哈萨克语:Маңғыстау облысы)是哈萨克斯坦的一个州份,西临里海,东邻乌兹别克,南邻土库曼。面积165,600平方公里。人口373,400(2006年资料)。首府阿克套。1
  • 希律王希律(希伯来语:.mw-parser-output .script-hebrew,.mw-parser-output .script-Hebr{font-size:1.15em;font-family:"Ezra SIL","Ezra SIL SR","Keter Aram Tsova","Taamey Ash
  • 肉毒素肉毒杆菌毒素(英文:BTX, Botulinum Toxin),也被称为肉毒毒素或肉毒杆菌素,是由肉毒杆菌于厌氧条件下生长时所产生的一类嗜神经性外毒素。肉毒杆菌毒素共有A、B、Cα、Cβ、D、E、
  • 基因座在生物学与进化计算中,基因座(英语:locus),也称为“基因位点”或“位点”,是指染色体上的固定位置,例如某个基因的所在。而基因座上的DNA序列可能有许多不同的变化,各种变化形式称为
  • 肥皂盒肥皂盒不使用洗手或其它清洁可罝放肥皂或洗衣皂,如浴缸或脸盆洗涤区附近。肥皂盒是由防水材料,如塑料,陶瓷和金属所组成。 肥皂盘,可安装在墙壁上。液体肥皂或肥皂泡沫,可用于给