曲线的微分几何

✍ dations ◷ 2025-08-13 20:09:24 #微分几何,曲线

曲线的微分几何是几何学的一个分支,使用微分与积分专门研究平面与欧几里得空间中的光滑曲线。

从古代开始,许多具体曲线已经用综合方法深入研究。微分几何采取另外一种方式:把曲线表示为参数形式,将它们的几何性质和各种量,比如曲率和弧长,用向量分析表示为导数和积分。分析曲线最重要的工具之一为 Frenet 标架,是一个活动标架,在曲线每一点附近给出“最合适”的坐标系。

曲线的理论比曲面理论及其高维推广的范围要狭窄得多,也简单得多。因为欧几里得空间中的正则曲线没有内蕴几何。任何正则曲线可以用弧长(“自然参数”)参数化,从曲线上来看不能知道周围空间的任何信息,所有曲线都是一样的。不同空间曲线只是由它们的弯曲和扭曲程度区分。数量上,这由微分几何不变量曲线的“曲率”和“挠率”来衡量。曲线基本定理断言这些不变量的信息完全确定了曲线。

n {\displaystyle n} 是闭区间 ,我们称 γ() 为曲线 γ 的起点而 γ() 为终点。

如果 γ ( a ) = γ ( b ) {\displaystyle \gamma (a)=\gamma (b)} )(a) = γ()() 对所有 ≤ 。

如果 γ : ( a , b ) R n {\displaystyle \gamma :(a,b)\to \mathbb {R} ^{n}} 参数曲线

要称为等价,就要存在一个 双射

使得

γ2 称为 γ1 的重新参数化。这种 γ1 的重新参数化在所有参数 曲线的集合上定义了一种等价关系,其等价类称为 Cr 曲线。

对定向 Cr 曲线,我们可以定义一种“加细”的等价关系,要求 φ 满足 φ'() > 0。

等价的 曲线有相同的像;等价的定向 曲线有相同的运动方向。

1 曲线 γ : → R 的长度 可以定义为

曲线的长度在重参数化下保持不变,从而是曲线的一个微分几何性质。

对任何正则 ( 至少为 1)曲线 γ: → R 我们可以定义一个函数

写成

这里 () 是 () 的逆函数,我们得到 γ 的一个新参数化 γ ¯ {\displaystyle {\bar {\gamma }}} () 称为 γ 的自然参数。

我们偏爱这个参数,因为自然参数 () 以单位速度转动 γ 的像,所以

在实际中常常很难计算出一条曲线的自然参数,但在理论讨论中很有用。

给定一条参数化曲线 γ() 的自然参数化是在差一个参数移动的意义下是惟一的。

数量

经常称为曲线的能量或作用量;这个名称是有理由的,因为测地线方程是这个作用量的欧拉-拉格朗日运动方程。

一个 Frenet 标架是一个移动的参考标架,由描述曲线在每一点 γ() 局部性质的 个正交向量 () 组成。这是微分几何处理曲线的主要工具,因为在这个局部参考系中,远比使用欧几里得那样的整体坐标系更容易和自然地描述局部性质(如曲率、挠率)。

给定 R 中一条 阶正则 +1-曲线 γ,曲线的 Frenet 标架是一组正交向量

称为 Frenet 向量。它们是通过对 γ() 的各阶导数使用格拉姆-施密特正交化算法得到的:

实值函数 χ() 称为 广义曲率,定义为

Frenet 标架和广义曲率在重新参数化下是不变的,故它们是曲线的微分几何性质。

最初三个 Frenet 向量和广义曲率可以在三维空间中看到。它们有额外的名字以及与名称相关更多信息。

如果曲线 γ 表示一个质点的轨迹,那么质点在给定点 的瞬时速度用一个向量表示,称为曲线在 的切向量。

数学表述为,给定一条曲线 γ = γ(),对参数 的任何值: = ,向量:

是点 = γ() 的切向量。一般说,切向量可以为零向量。

切向量的长度:

是在时间 0 的速率。


第一个 Frenet 向量 () 是在同一方向的单位切向量,在 γ 的每个正则点有定义:

如果 = 是自然参数则切向量有单位长,从而公式化简为:

单位切向量确定了曲线的定向,或随着参数增长的前进方向。

法向量,有时也称为曲率向量,表明曲线和一条直线的偏离程度。

法向量定义为

其正规形式单位法向量,是 Frenet 向量 2(),定义为

点的切向量和法向量张成 点的密切平面。

第一个广义曲率 χ1() 称为曲率,度量了曲线 γ 偏离密切平面上一条直线的程度。定义为

称为 γ 在点 的曲率。

曲率的倒数

称为曲率半径。

半径为 的圆周有常曲率

但一条直线的曲率是 0 。

次法向量是第三个 Frenet 向量 3() ,总是正交于 点的单位切向量和单位法向量。其定义为

在 3 维空间中等式简化为

第二广义曲率 χ2() 称为挠率,度量了 γ 和一条平面曲线的偏离程度。或者说,如果挠率为 0 则曲线完全在某平面内(任何 都在这一个平面内)。

称为 γ 在点 的挠率。

给定 个函数

满足

那么存在惟一的(在差一个欧几里得群作用的意义下) 阶正则 +1-曲线 γ,具有如下性质

这里集合

是曲面的 Frenet 标架。

再附加起始 0 ∈ ,起始点 0 ∈ R 以及一个初始正交标架 {1, ..., -1} 满足

那么我们可以排除欧几里得作用得到惟一的曲线 γ。

Frenet-Serret 公式是一组一阶常微分方程。其解为由广义曲率函数 χ 所刻画的曲线的 Frenet 向量组。

相关

  • 亲水性亲水性指分子能够透过氢键和水分子形成短暂键结的物理性质。因为热力学上合适,这种分子不只可以溶解在水里,也可以溶解在其他的极性溶液内。一个亲水性分子,或说分子的亲水性部
  • 佐治亚大学佐治亚大学(英语:University of Georgia, 缩写为UGA)创立于1785年,现有学生34,180人,为美国历史悠久的研究型大学和佐治亚州大学系统旗舰级大学,也是该州规模最大的高等院校,总校区
  • 陶器,古称瓦,是用黏土或陶土经捏制成形后烧制而成的器具。陶器历史悠久,在新石器时代就已初见简单粗糙的陶器。陶器在古代作为一种生活用品,在现在一般作为工艺品收藏。目前已知
  • Eusub2/subOsub3/sub三氧化二铕(化学式:Eu2O3),又称氧化铕、氧化铕(Ⅲ),是铕的氧化物。三氧化二铕可用来制造萤光粉或萤光玻璃,例如欧元(€)就是用三氧化二铕来防止伪钞出现。
  • 建筑材料建筑材料是指用于土木工程的各种材料的总称,简称“建材”。狭义上的建材是指用于土建工程的材料,如钢、沙石、玻璃、水泥、涂料等,通常将水泥、钢材和沙石称为一般建筑工程的三
  • 凯达格兰人凯达格兰族(Ketagalan)为台湾平埔族原住民,分布于淡水、台北、基隆一带,以台北盆地为主体。与兰阳平原上的噶玛兰族曾有着密切的关系,现因汉化而难以辨别。语源自社寮岛kuvu社语
  • 歇斯底里歇斯底里(Hysteria)指无法控制的情感发泄。在过去是一种精神疾病的名称,又被称为癔病或癔症。症状是由于未知恐惧等原因而情绪失控,或幻想身体某部位不舒服,却无法被医学检查出来
  • 中央省厅再编中央省厅再编(日语:中央省庁再編/ちゅうおうしょうちょうさいへん Chūō Shōchō Saihen)指的是日本国中央省厅的机能与组织的再统合,一般特指日本政府于2001年(平成13年)1月6日
  • 沈海高速沈阳-海口高速公路,简称“沈海高速”,中国国家高速公路网(71118网)编号为G15,起点在沈阳,途经辽阳、鞍山、营口、大连、烟台、青岛、日照、连云港、盐城、南通、苏州、上海、嘉兴、
  • 淡马锡新加坡王国(马来语:Kerajaan Singapura)是一个马来小王国,其疆界主要坐落在当今的岛国新加坡共和国。传统的历史观显示,逃亡的三佛齐巨港王子桑·尼拉·乌他马(Sang Nila Utama)于