实际数

✍ dations ◷ 2025-12-03 18:26:22 #整数数列

实际数(practical number)是指一正整数有许多约数,所有小于的正整数都可以用数个的相异真约数和表示。例如12的真约数有1, 2, 3, 4及6,而1至11的数字中有几个不是12的真约数,但都可以表示为数个相异真约数的和:5=3+2, 7=6+1, 8=6+2, 9=6+3, 10=6+3+1及11=6+3+2。

以下是实际数的列表(OEIS中的数列A005153):1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, ....

12,13世纪的意大利数学家斐波那契在其著作《计算之书》(Liber Abaci)中,在说明如何用埃及分数的和表示有理数时有用到实际数。斐波那契没有正式的定义实际数,但其中有一个表,其中有许多分数的分母为实际数。

实际数(practical number)一词最早是由Srinivasan在1948年开始使用,他希望可以找出有这类性质的数字,此工作后来在1955年由Stewart和Sierpiński完成。利用正整数的素因数分解可以判断是否是实际数,所有2的幂及偶数的完全数都是实际数。

已发现实际数和素数有许多类似的特质。

一个正整数可以由其素因数分解看出是否是实际数,一正整数 n = p 1 α 1 . . . p k α k {\displaystyle n=p_{1}^{\alpha _{1}}...p_{k}^{\alpha _{k}}} 之间的:

其中 σ ( x ) {\displaystyle \sigma (x)} 的除数函数。

例如3 ≤ σ(2)+1 = 4,29 ≤ σ(2 × 32)+1 = 40,及823 ≤ σ(2 × 32 × 29)+1=1171,因此2 × 32 × 29 × 823 = 429606为一实际数。

由于以上条件成立时,才能用其他较小的约数和表示 p i 1 {\displaystyle p_{i}-1}  − 1(2 − 1),其奇数的素因数可以用其他偶数部分的除数函数来表示,因此也满足实际数的充份必要条件。

任一个素数阶乘也都是实际数。根据伯特兰-切比雪夫定理,素数阶乘中最大的素数会小于次大素数和最小素数(2)的乘积,因此满足实际数的充份必要条件。前个素数幂次的乘积也都是实际数,包括阶乘以及斯里尼瓦瑟·拉马努金提出的高合成数。

若为实际数,则小于1的有理数/可以表示∑/来表示,其中为的相异约数,此式的每一项都可以化简为单位分数,因此此式即为/的埃及分数表示式。例如

斐波那契在其著作《计算之书》(Liber Abaci)中列出许多用埃及分数表示有理数的方式,首先先确认分数是否可以直接化简为单位分数,再来则是设法将分子表示为分母约数的和,此方式只在分母为实际数时有效。斐波那契列出了分母为6, 8, 12, 20, 24, 60及100时,分数用埃及分数表示时的表示式。

实际数特别的一点是其许多性质都类似素数。例如假设()为小于实际数的个数,Saias证明存在常数12使得下式成立:

以上公式可以对应素数的素数定理。此证明解答了Margenstern的猜想:存在特定常数,使得()渐近于/log 。也强化了保罗·埃尔德什所提出:实际数在正整数中的密度为0的论点。

实际数也有对应哥德巴赫猜想及孪生素数猜想的定理:每一个偶数可以表示为二个实际数的和,以及存在无限多个  − 2, ,  + 形式的实际数。Melfi也证明在斐波那契数列中存在无限多个实际数,素数对应的问题是是否存在无限多个斐波那契素数,此问题仍为开放问题,还没有被证明,但也还找不到反例。Hausman及Shapiro证明若为正实数,在区间内存在实际数,可以对应素数中的勒让德猜想。

相关

  • 山是地面上被平地所围绕的具有较大的绝对高度和相对高度而凸起的地貌区。山离地面高度通常在海拔600米以上,包括低山、中山与高山,是否被称作山取决于当地人。 山一般是因板块
  • Bernard–Soulier syndrome巨大血小板症候群(英语:giant platelet syndrome),又称为伯纳德-苏里尔症候群(Bernard–Soulier syndrome),是一种罕见的血小板异常性疾病,为常染色体隐性遗传。发病率仅百万分之一,大
  • 宇宙加速膨胀宇宙加速膨胀是宇宙的膨胀速度越来越快的现象。以天文学术语来说,就是宇宙标度因子  a ( t ) {\displays
  • 聚丁烯聚丁烯(Polybutene,PB)是一种高分子惰性聚合物,主要是由丁烯聚合而成。与聚丙烯和聚乙烯皆为经常使用的塑胶材料。聚丁烯主要用于自来水管、热水管与暖气管等等管道的管壁材料。
  • 3号线.mw-parser-output .RMbox{box-shadow:0 2px 2px 0 rgba(0,0,0,.14),0 1px 5px 0 rgba(0,0,0,.12),0 3px 1px -2px rgba(0,0,0,.2)}.mw-parser-output .RMinline{float:none
  • 苦 (佛教)苦(梵语:दुःख,转写:duḥkha,巴利语:dukkha),佛教术语,字面意义为痛苦、不安、不满足等。这是佛教中最基本的教义之一,为四圣谛之一 。梵文duḥkha,汉传佛教一般译为“苦”,或者“苦
  • 礼乐制度四配 颜回 · 孟子 · 曾参 · 孔伋日本 藤原惺窝 · 林罗山 · 室鸠巢 新井白石 · 雨森芳洲朝鲜 薛聪 · 权近 · 吉再 · 安珦 · 李穑 李滉 · 王仁 · 李
  • 戈莱马尼峰坐标:78°03′12″S 85°41′44″W / 78.05333°S 85.69556°W / -78.05333; -85.69556戈莱马尼峰是南极洲的山峰,位于埃尔斯沃思地,属于埃尔斯沃思山脉中森蒂纳尔岭的一部分,海
  • 卡尔滕霍尔茨豪森卡尔滕霍尔茨豪森(德语:Kaltenholzhausen)是德国莱茵兰-普法尔茨州的一个市镇。总面积6.06平方公里,总人口589人,其中男性298人,女性291人(2011年12月31日),人口密度97人/平方公里。
  • 暮光之城:暮色《暮光之城:暮色》(),作者Stephenie Meyer (斯蒂芬妮·迈耶),这是她所著暮光之城系列的第一集。书籍出版后,Stephenie Meyer成为了2005年最佳新秀作家之一。在母亲与一名棒球小