实际数

✍ dations ◷ 2025-11-07 17:42:52 #整数数列

实际数(practical number)是指一正整数有许多约数,所有小于的正整数都可以用数个的相异真约数和表示。例如12的真约数有1, 2, 3, 4及6,而1至11的数字中有几个不是12的真约数,但都可以表示为数个相异真约数的和:5=3+2, 7=6+1, 8=6+2, 9=6+3, 10=6+3+1及11=6+3+2。

以下是实际数的列表(OEIS中的数列A005153):1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, ....

12,13世纪的意大利数学家斐波那契在其著作《计算之书》(Liber Abaci)中,在说明如何用埃及分数的和表示有理数时有用到实际数。斐波那契没有正式的定义实际数,但其中有一个表,其中有许多分数的分母为实际数。

实际数(practical number)一词最早是由Srinivasan在1948年开始使用,他希望可以找出有这类性质的数字,此工作后来在1955年由Stewart和Sierpiński完成。利用正整数的素因数分解可以判断是否是实际数,所有2的幂及偶数的完全数都是实际数。

已发现实际数和素数有许多类似的特质。

一个正整数可以由其素因数分解看出是否是实际数,一正整数 n = p 1 α 1 . . . p k α k {\displaystyle n=p_{1}^{\alpha _{1}}...p_{k}^{\alpha _{k}}} 之间的:

其中 σ ( x ) {\displaystyle \sigma (x)} 的除数函数。

例如3 ≤ σ(2)+1 = 4,29 ≤ σ(2 × 32)+1 = 40,及823 ≤ σ(2 × 32 × 29)+1=1171,因此2 × 32 × 29 × 823 = 429606为一实际数。

由于以上条件成立时,才能用其他较小的约数和表示 p i 1 {\displaystyle p_{i}-1}  − 1(2 − 1),其奇数的素因数可以用其他偶数部分的除数函数来表示,因此也满足实际数的充份必要条件。

任一个素数阶乘也都是实际数。根据伯特兰-切比雪夫定理,素数阶乘中最大的素数会小于次大素数和最小素数(2)的乘积,因此满足实际数的充份必要条件。前个素数幂次的乘积也都是实际数,包括阶乘以及斯里尼瓦瑟·拉马努金提出的高合成数。

若为实际数,则小于1的有理数/可以表示∑/来表示,其中为的相异约数,此式的每一项都可以化简为单位分数,因此此式即为/的埃及分数表示式。例如

斐波那契在其著作《计算之书》(Liber Abaci)中列出许多用埃及分数表示有理数的方式,首先先确认分数是否可以直接化简为单位分数,再来则是设法将分子表示为分母约数的和,此方式只在分母为实际数时有效。斐波那契列出了分母为6, 8, 12, 20, 24, 60及100时,分数用埃及分数表示时的表示式。

实际数特别的一点是其许多性质都类似素数。例如假设()为小于实际数的个数,Saias证明存在常数12使得下式成立:

以上公式可以对应素数的素数定理。此证明解答了Margenstern的猜想:存在特定常数,使得()渐近于/log 。也强化了保罗·埃尔德什所提出:实际数在正整数中的密度为0的论点。

实际数也有对应哥德巴赫猜想及孪生素数猜想的定理:每一个偶数可以表示为二个实际数的和,以及存在无限多个  − 2, ,  + 形式的实际数。Melfi也证明在斐波那契数列中存在无限多个实际数,素数对应的问题是是否存在无限多个斐波那契素数,此问题仍为开放问题,还没有被证明,但也还找不到反例。Hausman及Shapiro证明若为正实数,在区间内存在实际数,可以对应素数中的勒让德猜想。

相关

  • 氮循环氮循环(英语:Nitrogen cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的
  • 第比利斯第比利斯(格鲁吉亚语:თბილისი.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gent
  • 俄罗斯擒拿术桑搏(俄语:са́мбо,IPA:.mw-parser-output .IPA{font-family:"Charis SIL","Doulos SIL","Linux Libertine","Segoe UI","Lucida Sans Unicode","Code2000","Gentium","Ge
  • 缪荃孙缪荃孙(1844年9月20日-1919年12月22日),字炎之,一字筱珊,晚号艺风,江苏江阴人,中国近代教育家、目录学家、史学家、方志学家、金石家,中国近代图书馆事业的奠基人,中国近代教育事业的
  • 斯坦尼斯劳斯斯坦尼斯劳斯县(Stanislaus County)是美国加利福尼亚州的一个县,县治莫德斯托。根据美国人口调查局2000年统计,共有人口446,997,其中白人占69.33%、亚裔美国人占4.22%、非裔美国
  • 蜂巢胃蜂巢胃,又称网胃,是反刍动物的第二个胃,也叫网胃,内壁有类似蜂巢形状六角形的突起,并有分解食物纤维之细菌。食物会由蜂巢胃挤回口腔咀嚼反刍。经反刍后比较小的食物粒子会进入重
  • 弗朗兹·凯撒弗朗兹·凯撒 (1891–1962) 是一位德国天文学家。他于1911年至1914年修读海德堡大学博士学位时在Heidelberg-Königstuhl Observatory工作,并于1915年获得该学位。当时,海德堡
  • 卡梅·查孔卡梅·玛莉亚·查孔·皮克拉斯(西班牙语:Carme María Chacón Piqueras,1971年3月13日-2017年4月9日),西班牙政治家,曾任何塞·路易斯·罗德里格斯·萨帕特罗首相任内第一届住房大
  • 丹尼尔·保定Daniel Jesse Boateng丹尼尔·保定(Daniel Jesse Boateng),生于1992年9月2日,是一名足球运动员,司职中后卫曾于阿森纳、史云顿、牛津联和喜伯年效力,现效力波斯尼亚奥林匹克萨拉
  • 苻廋苻廋(?-368年),中国五胡十六国时代人物,前秦开国皇帝苻健的第十子。前秦皇始元年(351年)正月二十日,苻健即天王、大单于位,立国号为大秦,改年号为皇始,封苻廋为魏公。次年,苻廋进封魏王。