圆锥形

✍ dations ◷ 2025-04-02 13:49:39 #圆锥形
圆锥也称为圆锥体,是一种三维几何体,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。一个直角锥和一个斜角锥正圆锥是基本的旋转体之一,由直角三角形以其中一条直角边所在的直线为旋转轴进行旋转得到。三角形的斜边长称为圆锥的母线。设圆锥的底面圆半径为 r {displaystyle r} ,圆锥的高为 h {displaystyle h} ,底面圆面积为 S {displaystyle S} ,体积为 V {displaystyle V} ,那么圆锥体的体积可以通过以下公式计算:其中底面圆面积: S = π r 2 . {displaystyle S=pi r^{2}.}圆锥的体积公式可以从祖暅原理推出。祖暅原理说明,如果两个高度相同的立体形体在所有等高截面上面积都相等,那么它们体积相等。以圆锥底面为基准面,放置一个底面积为 π r 2 {displaystyle pi r^{2}} 的正方锥,那么,在任何的高度 0 ≤ x ≤ h {displaystyle 0leq xleq h} 上,与基准面平行的平面截圆锥的截面面积都等于截正方锥的截面面积。所以圆锥的体积等于正方锥的体积,也就是 1 3 π r 2 h {displaystyle {frac {1}{3}}pi r^{2}h} 。另外,用现代的定积分方法也可以直接计算圆锥的体积公式,方法如下:圆锥的母线是一条从圆上的任何一点到锥体的顶点的直线,可被表达成 r 2 + h 2 {displaystyle {sqrt {r^{2}+h^{2}}}} ,其中 r {displaystyle r} 是圆锥底部的半径, h {displaystyle h} 是圆锥的高度。这可以由勾股定理证明。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的母线,对应的圆弧长为底部圆形的周长。设圆锥的母线为 l {displaystyle l} ,斜高可以表示为: l = r 2 + h 2 {displaystyle l={sqrt {r^{2}+h^{2}}}} 。设圆锥的表面积为 S t {displaystyle S_{t}} ,侧面积为 S c {displaystyle S_{c}} ,侧面积(也就是扇形的面积)可以用以下公式计算:表面积等于侧面积与底面圆面积的和,也就是:一个实心且质地均匀的正圆锥的重心在其底面与顶点连线上,位于顶点下 3 4 {displaystyle {frac {3}{4}}} 处。

相关

  • 阴道痉挛阴道痉挛是一种影响女性性行为能力的病症。可发生于各种形式的阴道插入中,包括性行为、卫生棉检查、妇科检查中的阴道插入。阴道痉挛是一种耻尾肌(英语:Pubococcygeus muscle)(有
  • 清醒清醒指的是人脑和意识所处的一种状态,在此期间个人能够保持意识,完成一系列的认知任务,并对外界的刺激有所反应,如交流、步行、进食、交配等。与清醒相对的状态是睡眠,在此期间外
  • 磷循环磷循环(英语:Phosphorus cycle)是生物地球化学循环,描述了通过岩石圈,水圈,生物圈的磷移动。因为磷和磷基化合物在地球上找到的典型范围的温度和压力下通常是固体,磷循环与许多其
  • 夏道行夏道行,是一位中国数学家。1930年生于中国江苏省泰州,数学家。1946年考入江苏学院数学系,后又入山东大学数学系,1950年入浙江大学数学研究所,师从陈建功教授。1952年进入复旦大学
  • 丹麦城市列表以下为主要丹麦城市列表:1 = 所有人口超过20,000的城市 2 = Ølstykke-Stenløse is a new city, created by conurbation between Ølstykke and Stenløse on 2010-01-01.
  • 约翰·赫维留约翰·赫维留斯(拉丁语:Johannes Hevelius,德语:Johann Hewelke或Johannes Hewel,波兰语:Jan Heweliusz,1611年1月28日-1687年1月28日)是波兰天文学家,并曾任但泽(即格但斯克)市长。赫维
  • 摩洛哥摩洛哥华人,是摩洛哥社会一个小社团,人数3000人,多从事零售和批发业。中国商人多聚集在卡萨布兰卡最大的商业区之一Derb奥马尔,唐人街已经出现。在这个区商家经营小型零售店铺,美
  • 菊花(学名:Chrysanthemum × morifolium)是菊科菊属多年生草本植物。别名黄花、黄华、秋菊、陶菊、寿客等。在中国古典文学中及文化中,菊花有着重要的地位,其与梅、兰、竹合称四
  • ShockwaveAdobe Shockwave(前为Macromedia Shockwave)是一个基于网页浏览器的多媒体平台,用于交互式应用程序和视频游戏。它是Macromedia在Flash之前最成功的多媒体播放器。它能将Adobe
  • Geoffrey Chaucer杰弗里·乔叟(英语:Geoffrey Chaucer,1343年-1400年10月25日),英国中世纪作家,被誉为英国中世纪最杰出的诗人,也是第一位葬在西敏寺诗人角的诗人。杰弗里·乔叟为有名的作家、哲学家