圆锥形

✍ dations ◷ 2025-11-19 18:19:55 #圆锥形
圆锥也称为圆锥体,是一种三维几何体,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。一个直角锥和一个斜角锥正圆锥是基本的旋转体之一,由直角三角形以其中一条直角边所在的直线为旋转轴进行旋转得到。三角形的斜边长称为圆锥的母线。设圆锥的底面圆半径为 r {displaystyle r} ,圆锥的高为 h {displaystyle h} ,底面圆面积为 S {displaystyle S} ,体积为 V {displaystyle V} ,那么圆锥体的体积可以通过以下公式计算:其中底面圆面积: S = π r 2 . {displaystyle S=pi r^{2}.}圆锥的体积公式可以从祖暅原理推出。祖暅原理说明,如果两个高度相同的立体形体在所有等高截面上面积都相等,那么它们体积相等。以圆锥底面为基准面,放置一个底面积为 π r 2 {displaystyle pi r^{2}} 的正方锥,那么,在任何的高度 0 ≤ x ≤ h {displaystyle 0leq xleq h} 上,与基准面平行的平面截圆锥的截面面积都等于截正方锥的截面面积。所以圆锥的体积等于正方锥的体积,也就是 1 3 π r 2 h {displaystyle {frac {1}{3}}pi r^{2}h} 。另外,用现代的定积分方法也可以直接计算圆锥的体积公式,方法如下:圆锥的母线是一条从圆上的任何一点到锥体的顶点的直线,可被表达成 r 2 + h 2 {displaystyle {sqrt {r^{2}+h^{2}}}} ,其中 r {displaystyle r} 是圆锥底部的半径, h {displaystyle h} 是圆锥的高度。这可以由勾股定理证明。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的母线,对应的圆弧长为底部圆形的周长。设圆锥的母线为 l {displaystyle l} ,斜高可以表示为: l = r 2 + h 2 {displaystyle l={sqrt {r^{2}+h^{2}}}} 。设圆锥的表面积为 S t {displaystyle S_{t}} ,侧面积为 S c {displaystyle S_{c}} ,侧面积(也就是扇形的面积)可以用以下公式计算:表面积等于侧面积与底面圆面积的和,也就是:一个实心且质地均匀的正圆锥的重心在其底面与顶点连线上,位于顶点下 3 4 {displaystyle {frac {3}{4}}} 处。

相关

  • 氨基酸氨基酸是生物学上重要的有机化合物,由氨基(-NH2)和羧基(-COOH)的官能团,以及连到每一个氨基酸的侧链组成。氨基酸是构成蛋白质的基本单位,赋予蛋白质特定的分子结构形态,使其分子具
  • 盎格鲁美洲/英语美洲盎格鲁美洲(英语:Anglo-America),又称英语美洲,用作描述以英语为主要语言,或者与英格兰或英伦三岛在历史、语言或文化上有密切关系的美洲地区,也可以指英语世界的美洲部分,与操罗曼
  • 五督政官古代斯巴达设有五督政官(ὁράω,“监管”的意思),每年由全体城邦公民选出,不得连任。这五人负责协助两位国王执政,他们每月都要立誓效忠国王,国王则立誓效忠法律。传说公元前7世
  • 后期中世纪后期 (Late Middle Ages),或称中世纪晚期、中世纪末期、中古后期、中古晚期、中古末期,是历史学者用来描述14世纪至15世纪(约1300年-1499年)欧洲历史的术语。中世纪晚期位
  • 意大利总统意大利共和国总统(意大利语:Presidente della Repubblica Italiana)是意大利礼仪性的国家元首和国家象征,任期七年。担任意大利总统的资格是至少50岁的意大利公民。意大利总统任
  • 普拉西战役普拉西战役,发生于1757年6月23日,是英国东印度公司与印度的孟加拉王公的战争。而孟加拉王公达乌拉有法国支持。战役背景是欧洲发生了七年战争,英法交战。在普拉西战役中,孟加拉
  • 老子老子(?-?),姓李,一说姓老,名耳,字伯阳、外字聃,世人尊称为“老子”,生于东周的楚国苦县厉乡曲仁里(原属陈国,今河南省鹿邑县),师从殷商末臣商容,于东周春秋时周朝守藏室任柱下史。中国春秋时
  • 通古斯大爆炸坐标:60°55′N 101°57′E / 60.917°N 101.950°E / 60.917; 101.950通古斯大爆炸(俄语:Тунгусский метеорит)是1908年6月30日上午7时17分(UTC 零时17分)发生
  • 废除死刑的国家或地区阿富汗(英语:Capital punishment in Afghanistan) · 巴哈马(英语:Capital punishment in the Bahamas) · 白俄罗斯 · 博茨瓦纳 · 中华人民共和国(罪名 · 死刑犯) · 古巴(
  • 五指湖五指湖国家森林(英语:Finger Lakes National Forest)是一座美国国家森林,面积16,259英亩(65.80平方千米),位于纽约州的瑟内萨县、斯凯勒县,五指湖区的瑟内萨湖(英语:Seneca Lake (New