首页 >
圆锥形
✍ dations ◷ 2025-12-02 03:14:38 #圆锥形
圆锥也称为圆锥体,是一种三维几何体,是平面上一个圆以及它的所有切线和平面外的一个定点确定的平面围成的形体。圆形被称为圆锥的底面,平面外的定点称为圆锥的顶点或尖端,顶点到底面所在平面的距离称为圆锥的高。通常“圆锥”一词用来指代正圆锥,也就是圆锥顶点在底面的投影是圆心时的情况。正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥称为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。一个直角锥和一个斜角锥正圆锥是基本的旋转体之一,由直角三角形以其中一条直角边所在的直线为旋转轴进行旋转得到。三角形的斜边长称为圆锥的母线。设圆锥的底面圆半径为
r
{displaystyle r}
,圆锥的高为
h
{displaystyle h}
,底面圆面积为
S
{displaystyle S}
,体积为
V
{displaystyle V}
,那么圆锥体的体积可以通过以下公式计算:其中底面圆面积:
S
=
π
r
2
.
{displaystyle S=pi r^{2}.}圆锥的体积公式可以从祖暅原理推出。祖暅原理说明,如果两个高度相同的立体形体在所有等高截面上面积都相等,那么它们体积相等。以圆锥底面为基准面,放置一个底面积为
π
r
2
{displaystyle pi r^{2}}
的正方锥,那么,在任何的高度
0
≤
x
≤
h
{displaystyle 0leq xleq h}
上,与基准面平行的平面截圆锥的截面面积都等于截正方锥的截面面积。所以圆锥的体积等于正方锥的体积,也就是
1
3
π
r
2
h
{displaystyle {frac {1}{3}}pi r^{2}h}
。另外,用现代的定积分方法也可以直接计算圆锥的体积公式,方法如下:圆锥的母线是一条从圆上的任何一点到锥体的顶点的直线,可被表达成
r
2
+
h
2
{displaystyle {sqrt {r^{2}+h^{2}}}}
,其中
r
{displaystyle r}
是圆锥底部的半径,
h
{displaystyle h}
是圆锥的高度。这可以由勾股定理证明。正圆锥的侧面可以展开为平面上的一个扇形。这个扇形所在的圆半径就是圆锥的母线,对应的圆弧长为底部圆形的周长。设圆锥的母线为
l
{displaystyle l}
,斜高可以表示为:
l
=
r
2
+
h
2
{displaystyle l={sqrt {r^{2}+h^{2}}}}
。设圆锥的表面积为
S
t
{displaystyle S_{t}}
,侧面积为
S
c
{displaystyle S_{c}}
,侧面积(也就是扇形的面积)可以用以下公式计算:表面积等于侧面积与底面圆面积的和,也就是:一个实心且质地均匀的正圆锥的重心在其底面与顶点连线上,位于顶点下
3
4
{displaystyle {frac {3}{4}}}
处。
相关
- 人畜共通传染病人畜共通病(英语:zoonoses)指任何可以经由动物传染给人或由人传染给动物的传染病。它们透过人畜之间直接传播,或是借由病媒传播(例如蚊子),将病原体带入另外一个生物体上,而这些病原
- 斯宾诺莎斯宾诺莎(拉迪诺语:Baruch de Spinoza,拉丁语:Benedictus de Spinoza,1632年11月24日-1677年2月21日),西方近代哲学史重要的理性主义者,与笛卡尔和莱布尼茨齐名。斯宾诺莎的祖先是居
- 楔形文字幼发拉底河 · 底格里斯河乌鲁克 · 乌尔 · 埃利都 启什 · 拉格什 · 尼普尔 阿卡德帝国 · 库提 乌尔第三王朝 · 伊辛第一王朝 · 拉尔萨 · 伊辛第二王朝古巴比
- 无机化合物无机化合物通常是缺乏C-H键的化合物,即非有机化合物的一种化合物,但是这个区分没有明确、公认的定义,学界对此有不同看法。尽管深层地幔的成分仍然是活跃的研究领域,但无机化合
- 导电体导体(conductor)为能够让电流通过的材料,依其导电性,能够细分为超导体、导体、半导体及绝缘体。在科学及工程上常用利用欧姆来定义某材料的导电程度。它们使电力极容易地通过它
- 巴布拉族拍瀑拉(Papora、Vupuran、Bopalat、Basagar、Babusagar,亦作:巴布拉族。)为台湾原住民,平埔族群之一,词源来自大肚社人之自称Papula(音近拍瀑拉)。早期曾分布于今台中市大肚区、大甲
- 白细胞介素免疫治疗n/an/an/an/an/an/an/an/an/an/a白细胞介素2 (英语:Interleukin 2,IL-2)是细胞因子中白细胞介素的一种,在免疫系统中起重要作用。它是一种蛋白质,负责调节白细胞(白细胞,通常是淋
- 凯山·丰威汉凯山·丰威汉(老挝语:ໄກສອນ ພົມວິຫານ,罗马化:Kaysone Phomvihane,1920年12月13日-1992年11月21日),老挝人民民主共和国、老挝人民革命党和老挝人民军的主要创立者和领
- 毕舍遮毕舍遮(梵语:पिशाच,转写:piśāca),又作毘舍阇(毗舍阇)、毗舍遮、辟舍柘、臂奢柘等,印度神话中以尸体和人的精气为食的恶鬼,又称癫鬼(颠鬼)、癫狂鬼(颠狂鬼)、啖精鬼、食精气鬼,或食尸
- 受威胁受威胁物种(Threatened species)是任何有可能在不久的将来灭绝的物种(包括动物、植物、真菌),也是IUCN保护现状中对易危物种(VU)、濒危物种(EN)、极危物种(CR)的统称。所有此范围内的物
