磁流体力学

✍ dations ◷ 2025-10-30 22:11:41 #磁流体力学

磁流体力学(英文:MHD, Magnetohydrodynamics、magnetofluiddynamics或hydromagnetics),是研究等离子体和磁场相互作用的物理学分支,其基本思想是在运动的导电流体中,磁场能够感应出电流。磁流体力学将等离子体作为连续介质处理,要求其特征尺度远远大于粒子的平均自由程、特征时间远远大于粒子的平均碰撞时间,不需考虑单个粒子的运动。由于磁流体力学只关心流体元的平均效果,因此是一种近似描述的方法,能够解释等离子体中的大多数现象,广泛应用于等离子体物理学的研究。更精确的描述方法是考虑粒子速度分布函数的动理学理论。磁流体力学的基本方程是流体力学中的纳维-斯托克斯方程和电动力学中的麦克斯韦方程组。磁流体力学是由瑞典物理学家汉尼斯·阿尔文创立的,阿尔文因此获得1970年的诺贝尔物理学奖。

磁流体力学的基本方程组有16个标量方程,包含16个未知标量,因此是完备的。结合边界条件可以求解这个方程组。

在磁流体力学中,等离子体可以看作是良导体,电磁场变化的特征时间远远大于粒子碰撞的时间,电磁场可以认为是准静态的,因此麦克斯韦方程组中的位移电流项可以忽略,写为:

由于存在洛伦兹力,欧姆定律的数学形式为:

等离子体是流体,满足流体的连续性方程:

流体的运动方程的右边应加上电磁力项 ρ q E + J × B {\displaystyle \rho _{q}{\boldsymbol {E}}+{\boldsymbol {J}}\times {\boldsymbol {B}}} ,而重力与电磁力相比是小量, ρ q E {\displaystyle \rho _{q}{\boldsymbol {E}}} 常常也可以忽略不计。因此运动方程为:

其中

能量方程的右边应加上因电磁场引起的焦耳热 E J {\displaystyle {\boldsymbol {E}}\cdot {\boldsymbol {J}}} ,重力所做的功可以忽略不计。因此能量方程为:

其中 q = κ T {\displaystyle {\boldsymbol {q}}=-\kappa \nabla T}

流体的状态方程形式为:

对于绝热过程,有

对于无粘( η = 0 {\displaystyle \eta =0} )、绝热( κ = 0 {\displaystyle \kappa =0} )、理想导电( σ {\displaystyle \sigma \to \infty } )的等离子体,即理想导电流体,磁流体力学方程可以简化为:

称为理想磁流体力学方程组。

实际情况中等离子体往往是两种或者两种以上成分组成的流体,描述它们的方程组特别复杂,求解十分困难。一般情况下可以认为高度电离的等离子体是由电子流体和离子流体两种成分组成的,等离子体的二流体模型或者双流体模型研究它们各自的动力学方程,并且考虑它们之间的耦合。在电子和离子每种组分里,达到平衡时的麦克斯韦速度分布所需要的时间远远小于电子和离子之间发生热交换的特征时间,因此在这种近似下,电子和离子可以认为是各自独立运动的,二者之间的碰撞导致了等离子体电阻。

将麦克斯韦方程组中的 J = × B / μ 0 {\displaystyle {\boldsymbol {J}}=\nabla \times {\boldsymbol {B}}/\mu _{0}} 代入洛伦兹力 f = J × B {\displaystyle {\boldsymbol {f}}={\boldsymbol {J}}\times {\boldsymbol {B}}} 可得

上式右边第一项反映了大小为 B 2 / μ 0 {\displaystyle B^{2}/\mu _{0}} ,沿着磁感线方向的磁张力,第二项反映了大小为 B 2 / 2 μ 0 {\displaystyle B^{2}/2\mu _{0}} ,各向同性的磁压力,其效果是压缩等离子体。因此,作用于某流体质元的磁力等效于磁张力与磁压力的和。

在磁流体力学中,等离子体可以看作是良导体,磁感应方程为:

其中, η = 1 σ ν {\displaystyle \eta ={\frac {1}{\sigma \nu }}} 叫做磁粘滞系数或者磁扩散系数。如果磁雷诺数 R m = l 0 V 0 η 1 {\displaystyle R_{m}={\frac {l_{0}V_{0}}{\eta }}\ll 1} ,则磁感应方程退化为扩散方程的形式

此时等离子体会表现出磁扩散效应,磁场从强度大的区域向强度小的区域发生扩散。

如果磁雷诺数 R m = l 0 V 0 η 1 {\displaystyle R_{m}={\frac {l_{0}V_{0}}{\eta }}\gg 1} ,或者流体的电导率 σ {\displaystyle \sigma \to \infty } ,则磁感应方程退化为冻结方程:

此时等离子体会表现出磁冻结效应,磁感线如同粘附在流体质元上,随流体一起运动。

相关

  • 释气释气 (有时称为气体挥发,特别是参考室内空气质量) 是一些材料因为分解、通风、或吸收所释放出的气体。例如,研究显示大气层中二氧化碳的浓度有时和海洋的释气有所关联。它可以
  • 虐囚事件阿布格莱布监狱虐囚事件(英语:Abu Ghraib torture and prisoner abuse;阿拉伯语:فضيحة التعذيب في سجن أبو غريب‎),又称美军虐待伊拉克战俘事件、美英联
  • 罗伯特·加罗罗伯特·查尔斯·加洛(英语:Robert Charles Gallo,1937年3月23日-),美国病毒学家。早期研究白血病,后转向肿瘤病毒的研究。生于康涅狄格州沃特伯里。加洛最出名的贡献是发现第一个
  • 孟加拉国解放战争孟加拉国与印度胜利孟加拉国巴基斯坦准军事力量:巴基斯坦战斗部队:~365,000人巴基斯坦 8,000人 阵亡 10,000人 受伤 93,000人 被俘(武装部队56,694人准军事部队12,192人其他为平
  • $200200美元纸币是在美国出现过多次的恶作剧事件。恶作剧者一般出于讽刺当局的目的使用假造的200美元纸币进行消费。因为美国历史上从未发行过200美元面值的纸币,因此执法部门在
  • 自由思想对宗教的批评 · 自由思想 反教权主义 · 反宗教 虚构宗教自由思想是一种知识论观点,认为事实应当由逻辑、理智和经验来作为基础,而非因权威、传统、宗教教义或是启示而形成
  • 亚历山大症亚历山大症(英语:Alexander disease)是一种缓慢恶化但致命的神经退行性疾病,亚历山大症是一种非常罕见的疾病,起因于基因突变,主要影响婴幼儿和儿童,造成发育迟缓和身体特征的变化
  • 2019冠状病毒病利比里亚疫情2019冠状病毒病利比里亚疫情,介绍在2019新型冠状病毒疫情中,在利比里亚发生的情况。2020年3月16日,利比里亚首次确诊1例新冠肺炎病例。一名从海外归国政府官员在入境时自愿要求
  • 环境物理学环境物理学是物理学与环境科学的交叉学科,主要研究人类和物理环境之间相互的作用,其体系目前尚没有完全定型,目前主要研究声、光、热、加速度、电磁场、射线对人体以及环境生态
  • 南阳站 (咸镜北道)南阳站(韩语:남양역)是朝鲜民主主义人民共和国咸镜北道稳城郡南阳劳动者区的一个铁路车站,属于咸北线和南阳国境线。咸北线南阳国境线