磁流体力学

✍ dations ◷ 2025-05-17 11:49:04 #磁流体力学

磁流体力学(英文:MHD, Magnetohydrodynamics、magnetofluiddynamics或hydromagnetics),是研究等离子体和磁场相互作用的物理学分支,其基本思想是在运动的导电流体中,磁场能够感应出电流。磁流体力学将等离子体作为连续介质处理,要求其特征尺度远远大于粒子的平均自由程、特征时间远远大于粒子的平均碰撞时间,不需考虑单个粒子的运动。由于磁流体力学只关心流体元的平均效果,因此是一种近似描述的方法,能够解释等离子体中的大多数现象,广泛应用于等离子体物理学的研究。更精确的描述方法是考虑粒子速度分布函数的动理学理论。磁流体力学的基本方程是流体力学中的纳维-斯托克斯方程和电动力学中的麦克斯韦方程组。磁流体力学是由瑞典物理学家汉尼斯·阿尔文创立的,阿尔文因此获得1970年的诺贝尔物理学奖。

磁流体力学的基本方程组有16个标量方程,包含16个未知标量,因此是完备的。结合边界条件可以求解这个方程组。

在磁流体力学中,等离子体可以看作是良导体,电磁场变化的特征时间远远大于粒子碰撞的时间,电磁场可以认为是准静态的,因此麦克斯韦方程组中的位移电流项可以忽略,写为:

由于存在洛伦兹力,欧姆定律的数学形式为:

等离子体是流体,满足流体的连续性方程:

流体的运动方程的右边应加上电磁力项 ρ q E + J × B {\displaystyle \rho _{q}{\boldsymbol {E}}+{\boldsymbol {J}}\times {\boldsymbol {B}}} ,而重力与电磁力相比是小量, ρ q E {\displaystyle \rho _{q}{\boldsymbol {E}}} 常常也可以忽略不计。因此运动方程为:

其中

能量方程的右边应加上因电磁场引起的焦耳热 E J {\displaystyle {\boldsymbol {E}}\cdot {\boldsymbol {J}}} ,重力所做的功可以忽略不计。因此能量方程为:

其中 q = κ T {\displaystyle {\boldsymbol {q}}=-\kappa \nabla T}

流体的状态方程形式为:

对于绝热过程,有

对于无粘( η = 0 {\displaystyle \eta =0} )、绝热( κ = 0 {\displaystyle \kappa =0} )、理想导电( σ {\displaystyle \sigma \to \infty } )的等离子体,即理想导电流体,磁流体力学方程可以简化为:

称为理想磁流体力学方程组。

实际情况中等离子体往往是两种或者两种以上成分组成的流体,描述它们的方程组特别复杂,求解十分困难。一般情况下可以认为高度电离的等离子体是由电子流体和离子流体两种成分组成的,等离子体的二流体模型或者双流体模型研究它们各自的动力学方程,并且考虑它们之间的耦合。在电子和离子每种组分里,达到平衡时的麦克斯韦速度分布所需要的时间远远小于电子和离子之间发生热交换的特征时间,因此在这种近似下,电子和离子可以认为是各自独立运动的,二者之间的碰撞导致了等离子体电阻。

将麦克斯韦方程组中的 J = × B / μ 0 {\displaystyle {\boldsymbol {J}}=\nabla \times {\boldsymbol {B}}/\mu _{0}} 代入洛伦兹力 f = J × B {\displaystyle {\boldsymbol {f}}={\boldsymbol {J}}\times {\boldsymbol {B}}} 可得

上式右边第一项反映了大小为 B 2 / μ 0 {\displaystyle B^{2}/\mu _{0}} ,沿着磁感线方向的磁张力,第二项反映了大小为 B 2 / 2 μ 0 {\displaystyle B^{2}/2\mu _{0}} ,各向同性的磁压力,其效果是压缩等离子体。因此,作用于某流体质元的磁力等效于磁张力与磁压力的和。

在磁流体力学中,等离子体可以看作是良导体,磁感应方程为:

其中, η = 1 σ ν {\displaystyle \eta ={\frac {1}{\sigma \nu }}} 叫做磁粘滞系数或者磁扩散系数。如果磁雷诺数 R m = l 0 V 0 η 1 {\displaystyle R_{m}={\frac {l_{0}V_{0}}{\eta }}\ll 1} ,则磁感应方程退化为扩散方程的形式

此时等离子体会表现出磁扩散效应,磁场从强度大的区域向强度小的区域发生扩散。

如果磁雷诺数 R m = l 0 V 0 η 1 {\displaystyle R_{m}={\frac {l_{0}V_{0}}{\eta }}\gg 1} ,或者流体的电导率 σ {\displaystyle \sigma \to \infty } ,则磁感应方程退化为冻结方程:

此时等离子体会表现出磁冻结效应,磁感线如同粘附在流体质元上,随流体一起运动。

相关

  • 皮脂腺皮脂腺是一种全泌腺,作用为分泌油脂,油脂对于人类可以固定毛发,防止毛发因纷乱而阻碍视线,湿润的毛发的结构容易打结并且容易沾纳污垢,而有油脂的毛发不易散乱,对于皮肤表面,则会在
  • 里克·奥卡西克里克·奥卡西克(英语:Ric Ocasek,1944年3月23日-2019年9月15日),美国摇滚音乐家、创作歌手以及作曲家,前汽车合唱团乐队歌手兼节奏吉他手/词曲作者。 2018年,他被加入摇滚名人堂。作
  • 魔酸魔酸,又名氟锑磺酸,是较早发现的超强酸之一,称它有魔法是因为它能够分解蜡烛中的蜡。魔酸是一种路易斯酸五氟化锑和一种质子酸氟磺酸的混合物。氟磺酸和五氟化锑按1:0.3(摩尔比)
  • Olympus Corporation奥林巴斯株式会社(オリンパス株式会社,Olympus Corporation,东证1部:7733)是一家精于光学与成像的日本公司。产品包括显微镜、照相机、录音机、内视镜与其他医疗设备。奥林巴斯于
  • 露天排便露天排便(英语:Open defecation,或称随地便溺、随地大小便),是指人类不使用卫生间,选择在室外排便。人会因难以找到合适的卫生间,或因其风俗的缘故,而选择在室外譬如灌木丛、森林、
  • Insecta见内文昆虫在分类学上属于昆虫纲(学名:Insecta),是世界上最繁盛的动物,已发现超过100万种。其中单鞘翅目(Coleoptera)中所含的种数就比其它所有动物界中的种数还多。昆字原作䖵。昆
  • 泛称在生物分类中,俗名是指任何非拉丁学名的名称。在同一种语言的俗名中,又分普通名(common name)和别名。普通名是在该语言中被广泛接受使用名称;别名是普通名之外的其他所有俗名
  • 广汕高速动车组列车广汕高速动车组列车是中华人民共和国中国铁路高速所运营的一条客运路线,往来广州南站及潮汕站或汕头站。2013年12月28日随杭深铁路厦深段启用而正式开行。现由广州局集团广九
  • 古白鲟古白鲟(学名:),是一种已灭绝的匙吻鲟,生存于晚白垩纪的北美洲。古白鲟属下已知只有一个物种,即威氏古白鲟()。目前对古白鲟的资讯来自于三个现存于密歇根大学古生物博物馆内的化石
  • 杜心五杜心五(1869年-1953年),名慎魁,号儒侠,道号斗米观居士,是中国著名的武术家,被万籁声称为自然门的第二代宗师,也是清末时的革命党员,曾担任宋教仁、孙中山先生等人的保镖。杜心五出生于