广义相对论中的数学入门

✍ dations ◷ 2025-08-08 20:18:50 #广义相对论中的数学入门
广义相对论所使用的数学很复杂。牛顿的运动理论中,物体做加速度运动时,其长度和时间流逝的速率保持定值,这表示牛顿力学中的许多问题用代数就能解决。然而,相对论中的物体在运动速度接近光速时,长度和时间流逝的速率会有可观的改变,这表示要计算物体的运动必须用上更多变数和复杂的数学,如向量、张量、伪张量、曲线座标(英语:curvilinear coordinates)等概念。在数学、物理学及工程学中,欧几里得向量(有时也称为“几何向量”、“空间向量”,或单称“向量”)是同时有量值(长度)和方向的几何对象。一个向量将 A {displaystyle A} 点“搬运”至 B {displaystyle B} 点;向量的拉丁文“vector”意思为“搬运东西的东西”。向量的量值就是两点之间的距离,方向则为 A {displaystyle A} 到 B {displaystyle B} 的位移方向。很多实数的代数运算(英语:algebraic operation),像加、减、乘、逻辑非,和向量的运算很类似,运算也遵守相似的代数法则,如交换律、结合律、分配律。张量将向量的概念延伸至额外的维度。标量是没有方向的量,是单纯的数字,在图上以点来表示,是零维的物件。向量则有量值和方向,在图上以线呈现,是一维的物件。张量延伸了向量的概念,一个二维的张量称为二阶张量,可以看成一组相关的向量,在一个平面上的多个方向移动。向量在物理科学里很基础。他们可用来代表所有同时有量值和方向的量,例如速度。速度的量值为速率。举例而言,每秒五米向上的速度可以向量(0, 5)表示(在二维以 y {displaystyle y} 轴的正方向表示向上)。力的量也能以向量表示,因为它有量值和方向。向量也能描述很多其他的物理量,如位移、加速度、动量和角动量。其他物理向量,如电场和磁场,以物理空间中所有点的向量系统表示,也就是向量场。张量在物理中也有延伸应用:广义相对论需要用到四维向量,或称四向量。这四维为长、宽、高、时间。其中的“点”代表事件,因为它同时包含地点和时间。类似向量,相对论中的张量也需要四维。其中一个例子就是黎曼曲率张量。In physics, as well as mathematics, a vector is often identified with a tuple, or list of numbers, which depend on some auxiliary coordinate system or reference frame. When the coordinates are transformed, for example by rotation or stretching of the coordinate system, then the components of the vector also transform. The vector itself has not changed, but the reference frame has, so the components of the vector (or measurements taken with respect to the reference frame) must change to compensate.The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates.In Einstein notation, contravariant vectors and components of tensors are shown with superscripts, e.g. xi, and covariant vectors and components of tensors with subscripts, e.g. xi. Indices are "raised" or "lowered" by multiplication by an appropriate matrix, often the identity matrix.Coordinate transformation is important because relativity states that there is no one correct reference point in the universe. On earth, we use dimensions like north, east, and elevation, which are used throughout the entire planet. There is no such system for space. Without a clear reference grid, it becomes more accurate to describe the four dimensions as towards/away, left/right, up/down and past/future. As an example event, take the signing of the Declaration of Independence. To a modern observer on Mount Rainier looking east, the event is ahead, to the right, below, and in the past. However, to an observer in medieval England looking north, the event is behind, to the left, neither up nor down, and in the future. The event itself has not changed, the location of the observer has.An oblique coordinate system is one in which the axes are not necessarily orthogonal to each other; that is, they meet at angles other than right angles. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system.A nontensor is a tensor-like quantity that behaves like a tensor in the raising and lowering of indices, but that does not transform like a tensor under a coordinate transformation. For example, Christoffel symbols cannot be tensors themselves if the coordinates don't change in a linear way.In general relativity, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor(英语:Landau–Lifshitz pseudotensor).Curvilinear coordinates(英语:Curvilinear coordinates) are coordinates in which the angles between axes can change from point to point. This means that rather than having a grid of straight lines, the grid instead has curvature.A good example of this is the surface of the Earth. While maps frequently portray north, south, east and west as a simple square grid, that is not in fact the case. Instead, the longitude lines running north and south are curved and meet at the north pole. This is because the Earth is not flat, but instead round.In general relativity, gravity has curvature effects on the four dimensions of the universe. A common analogy is placing a heavy object on a stretched out rubber sheet, causing the sheet to bend downward. This curves the coordinate system around the object, much like an object in the universe curves the coordinate system it sits in. The mathematics here are conceptually more complex than on Earth, as it results in four dimensions of curved coordinates instead of three as used to describe a curved 2D surface.In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their temporal separation. The interval, s2, between two events is defined as:where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s2 above follows the space-like convention (−+++)(英语:sign convention#Relativity). A notation like Δr2 means (Δr)2. The reason s2 is called the interval and not s is that s2 can be positive, zero or negative.Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c2Δt2) or the spatial separation (Δr2) of the two events is greater: time-like, light-like or space-like.Certain types of world lines are called geodesics of the spacetime – straight lines in the case of Minkowski space and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points. The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, which takes as its inputs: (1) a vector, u, (along which the derivative is taken) defined at a point P, and (2) a vector field, v, defined in a neighborhood of P. The output is a vector, also at the point P. The primary difference from the usual directional derivative is that the covariant derivative must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.Given the covariant derivative, one can define the parallel transport of a vector v at a point P along a curve γ starting at P. For each point x of γ, the parallel transport of v at x will be a function of x, and can be written as v(x), where v(0) = v. The function v is determined by the requirement that the covariant derivative of v(x) along γ is 0. This is similar to the fact that a constant function is one whose derivative is constantly 0.The equation for the covariant derivative can be written in terms of Christoffel symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the Riemann tensor, which can be written in terms of Christoffel symbols, a calculation of the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations(英语:solving the geodesic equations) in which the Christoffel symbols explicitly appear.In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime geometry around the star onto 3-dimensional space.A curve is a geodesic if the tangent vector(英语:tangent vector) of the curve at any point is equal to the parallel transport of the tangent vector(英语:tangent vector) of the base point.The Riemann tensor tells us, mathematically, how much curvature there is in any given region of space. Contracting the tensor produces 3 different mathematical objects:The Riemann curvature tensor can be expressed in terms of the covariant derivative.The Einstein tensor G is a rank-2 tensor defined over pseudo-Riemannian manifolds. In index-free notation it is defined aswhere R is the Ricci tensor, g is the metric tensor and R is the scalar curvature. It is used in the Einstein field equations.The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force field(英语:force field (physics))s. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy. First published by Einstein in 1915 as a tensor equation, the EFE equate local spacetime curvature (expressed by the Einstein tensor) with the local energy and momentum within that spacetime (expressed by the stress–energy tensor).The Einstein Field Equations can be written aswhere Gμν is the Einstein tensor and Tμν is the stress–energy tensor.This implies that the curvature of space (represented by the Einstein tensor) is directly connected to the presence of matter and energy (represented by the stress–energy tensor).In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. The solution is named after Karl Schwarzschild, who first published the solution in 1916.According to Birkhoff's theorem(英语:Birkhoff's theorem (relativity)), the Schwarzschild metric is the most general spherically symmetric(英语:rotational symmetry), vacuum solution(英语:Vacuum solution (general relativity)) of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has no charge or angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.

相关

  • 胞器细胞器(英语:organelle,或称胞器)是细胞的一部分, 是细胞中通过生物膜与细胞中其他部分分隔开来的、功能上独立的亚细胞结构,与细胞质基质和细胞骨架统称为“细胞质”。细胞器可依
  • 手指手指是人或一些灵长类动物(例如猿)的手上的指头。人的手指虽然非常灵活,但也非常纤细,原因是因为活动手指的肌肉不位于手指内,而位于下臂,这些肌肉通过长的腱来指导手指的运动。有
  • 视力视力是指视觉的灵敏度及清晰度,主要取决于眼睛视网膜中心对视觉图像的敏锐程度和大脑中视皮层对图像的解析能力。
  • 性传播疾病性感染疾病(英语:Sexually transmitted infections, STI),又称性病(英语:Venereal Disease, VD)或花柳病,描述因性行为(指阴道性行为、肛交和口交)而传播的疾病。大多数的性感染疾病一
  • 编辑编辑,是一种工作及职业,指为各种媒体(以出版物为主)在出版前进行的后期制作,包括文字、图像、录音、录像、多媒体生成处理,和制作审核、校对的一项工序。此工作从业人员的中文职称
  • 高胱胺酸尿症高胱氨酸尿症(英语:Homocystinuria)是一种遗传病,其会导致体内堆积甲硫氨酸、高胱氨酸、高半胱氨酸及复合双硫化合物,造成智能不足、骨骼畸型、心脏血管疾病等。此遗传病的发生率
  • 颚(英语:Jaw),在解剖学中,指在嘴部入口处相对的铰接式结构,最常见的用途是用来进食与咀嚼食物。在大多数的动物身上,都拥有这个解剖结构。在人体解剖学中,又称颌,指嘴部的上下骨骼与
  • 根毛根毛是高等植物根尖表皮上的毛状物,主要位于根的成熟区,形成根毛区。根毛由成熟区表皮细胞向外突出而成,具有顶端封闭的管状结构,其长度由数十到上千微米不等,可通过肉眼观察到。
  • Ssub2/subFsub2/sub二氟化二硫是一种硫的卤化物,化学式为S2F2。在严格干燥的容器中用二氟化银和硫单质,可得结构式为FS-SF的二氟化二硫:存在碱金属氟化物时,二氟化二硫会发生分子内重排,转变为S=SF2
  • 雅克·皮卡德雅克·皮卡尔(Jacques Piccard,1922年7月22日-2008年11月1日),瑞士著名深海探险家及发明家。出生于比利时布鲁塞尔,主要的贡献是对于研究洋流的深海探险器的发明改进。