广义相对论中的数学入门

✍ dations ◷ 2025-08-29 04:39:29 #广义相对论中的数学入门
广义相对论所使用的数学很复杂。牛顿的运动理论中,物体做加速度运动时,其长度和时间流逝的速率保持定值,这表示牛顿力学中的许多问题用代数就能解决。然而,相对论中的物体在运动速度接近光速时,长度和时间流逝的速率会有可观的改变,这表示要计算物体的运动必须用上更多变数和复杂的数学,如向量、张量、伪张量、曲线座标(英语:curvilinear coordinates)等概念。在数学、物理学及工程学中,欧几里得向量(有时也称为“几何向量”、“空间向量”,或单称“向量”)是同时有量值(长度)和方向的几何对象。一个向量将 A {displaystyle A} 点“搬运”至 B {displaystyle B} 点;向量的拉丁文“vector”意思为“搬运东西的东西”。向量的量值就是两点之间的距离,方向则为 A {displaystyle A} 到 B {displaystyle B} 的位移方向。很多实数的代数运算(英语:algebraic operation),像加、减、乘、逻辑非,和向量的运算很类似,运算也遵守相似的代数法则,如交换律、结合律、分配律。张量将向量的概念延伸至额外的维度。标量是没有方向的量,是单纯的数字,在图上以点来表示,是零维的物件。向量则有量值和方向,在图上以线呈现,是一维的物件。张量延伸了向量的概念,一个二维的张量称为二阶张量,可以看成一组相关的向量,在一个平面上的多个方向移动。向量在物理科学里很基础。他们可用来代表所有同时有量值和方向的量,例如速度。速度的量值为速率。举例而言,每秒五米向上的速度可以向量(0, 5)表示(在二维以 y {displaystyle y} 轴的正方向表示向上)。力的量也能以向量表示,因为它有量值和方向。向量也能描述很多其他的物理量,如位移、加速度、动量和角动量。其他物理向量,如电场和磁场,以物理空间中所有点的向量系统表示,也就是向量场。张量在物理中也有延伸应用:广义相对论需要用到四维向量,或称四向量。这四维为长、宽、高、时间。其中的“点”代表事件,因为它同时包含地点和时间。类似向量,相对论中的张量也需要四维。其中一个例子就是黎曼曲率张量。In physics, as well as mathematics, a vector is often identified with a tuple, or list of numbers, which depend on some auxiliary coordinate system or reference frame. When the coordinates are transformed, for example by rotation or stretching of the coordinate system, then the components of the vector also transform. The vector itself has not changed, but the reference frame has, so the components of the vector (or measurements taken with respect to the reference frame) must change to compensate.The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates.In Einstein notation, contravariant vectors and components of tensors are shown with superscripts, e.g. xi, and covariant vectors and components of tensors with subscripts, e.g. xi. Indices are "raised" or "lowered" by multiplication by an appropriate matrix, often the identity matrix.Coordinate transformation is important because relativity states that there is no one correct reference point in the universe. On earth, we use dimensions like north, east, and elevation, which are used throughout the entire planet. There is no such system for space. Without a clear reference grid, it becomes more accurate to describe the four dimensions as towards/away, left/right, up/down and past/future. As an example event, take the signing of the Declaration of Independence. To a modern observer on Mount Rainier looking east, the event is ahead, to the right, below, and in the past. However, to an observer in medieval England looking north, the event is behind, to the left, neither up nor down, and in the future. The event itself has not changed, the location of the observer has.An oblique coordinate system is one in which the axes are not necessarily orthogonal to each other; that is, they meet at angles other than right angles. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system.A nontensor is a tensor-like quantity that behaves like a tensor in the raising and lowering of indices, but that does not transform like a tensor under a coordinate transformation. For example, Christoffel symbols cannot be tensors themselves if the coordinates don't change in a linear way.In general relativity, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor(英语:Landau–Lifshitz pseudotensor).Curvilinear coordinates(英语:Curvilinear coordinates) are coordinates in which the angles between axes can change from point to point. This means that rather than having a grid of straight lines, the grid instead has curvature.A good example of this is the surface of the Earth. While maps frequently portray north, south, east and west as a simple square grid, that is not in fact the case. Instead, the longitude lines running north and south are curved and meet at the north pole. This is because the Earth is not flat, but instead round.In general relativity, gravity has curvature effects on the four dimensions of the universe. A common analogy is placing a heavy object on a stretched out rubber sheet, causing the sheet to bend downward. This curves the coordinate system around the object, much like an object in the universe curves the coordinate system it sits in. The mathematics here are conceptually more complex than on Earth, as it results in four dimensions of curved coordinates instead of three as used to describe a curved 2D surface.In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their temporal separation. The interval, s2, between two events is defined as:where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s2 above follows the space-like convention (−+++)(英语:sign convention#Relativity). A notation like Δr2 means (Δr)2. The reason s2 is called the interval and not s is that s2 can be positive, zero or negative.Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c2Δt2) or the spatial separation (Δr2) of the two events is greater: time-like, light-like or space-like.Certain types of world lines are called geodesics of the spacetime – straight lines in the case of Minkowski space and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points. The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, which takes as its inputs: (1) a vector, u, (along which the derivative is taken) defined at a point P, and (2) a vector field, v, defined in a neighborhood of P. The output is a vector, also at the point P. The primary difference from the usual directional derivative is that the covariant derivative must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.Given the covariant derivative, one can define the parallel transport of a vector v at a point P along a curve γ starting at P. For each point x of γ, the parallel transport of v at x will be a function of x, and can be written as v(x), where v(0) = v. The function v is determined by the requirement that the covariant derivative of v(x) along γ is 0. This is similar to the fact that a constant function is one whose derivative is constantly 0.The equation for the covariant derivative can be written in terms of Christoffel symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the Riemann tensor, which can be written in terms of Christoffel symbols, a calculation of the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations(英语:solving the geodesic equations) in which the Christoffel symbols explicitly appear.In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime geometry around the star onto 3-dimensional space.A curve is a geodesic if the tangent vector(英语:tangent vector) of the curve at any point is equal to the parallel transport of the tangent vector(英语:tangent vector) of the base point.The Riemann tensor tells us, mathematically, how much curvature there is in any given region of space. Contracting the tensor produces 3 different mathematical objects:The Riemann curvature tensor can be expressed in terms of the covariant derivative.The Einstein tensor G is a rank-2 tensor defined over pseudo-Riemannian manifolds. In index-free notation it is defined aswhere R is the Ricci tensor, g is the metric tensor and R is the scalar curvature. It is used in the Einstein field equations.The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force field(英语:force field (physics))s. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy. First published by Einstein in 1915 as a tensor equation, the EFE equate local spacetime curvature (expressed by the Einstein tensor) with the local energy and momentum within that spacetime (expressed by the stress–energy tensor).The Einstein Field Equations can be written aswhere Gμν is the Einstein tensor and Tμν is the stress–energy tensor.This implies that the curvature of space (represented by the Einstein tensor) is directly connected to the presence of matter and energy (represented by the stress–energy tensor).In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. The solution is named after Karl Schwarzschild, who first published the solution in 1916.According to Birkhoff's theorem(英语:Birkhoff's theorem (relativity)), the Schwarzschild metric is the most general spherically symmetric(英语:rotational symmetry), vacuum solution(英语:Vacuum solution (general relativity)) of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has no charge or angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.

相关

  • 马塞诸塞州马è¨è¯¸å¡å·ï¼ˆè‹±è¯­ï¼šCommonwealth of Massachusetts),简称麻çœã€éº»å·ï¼Œæ­£å¼å称为é©
  • 蚱蜢效应蚱蜢效应(grasshopper effect)是指污染物透过挥发或是风力的影响,不断的释放至大气中,然后再借由沉降作用(例如降雨)回到陆地上,并随季节变化一直在反复进行着。持久性有机污染物(pe
  • 贝达贝达(阿拉伯语:البيضاء‎ (英文:Al Bayda)是位于利比亚东北部绿山省境内的一座城市,人口250000(2010年)。
  • 新修本草《新修本草》,因成书时主持修撰的是英国公李
  • 紧凑μ子线圈紧凑μ子线圈(CMS,Compact Muon Solenoid),瑞士欧洲核子研究组织CERN的大型强子对撞机计划的两大通用型粒子侦测器中的一个。直至2006年,已有约2300位来自159个不同的研究机构的
  • 人猿/古猿非洲南方古猿(Australopithecus africanus),又名非洲南猿或南方古猿非洲种,是属于早期人科的非洲南方人猿,生存于200-300万年前的上新世。较古老的阿法南方古猿与非洲南方古猿都
  • 反安慰剂效应反安慰剂效应(拉丁文“nocebo”,意为“我将伤害”)指出一些信念或预期等心理效果,可能会导致疾病产生,或影响治疗的效果。安慰剂效应指病人虽然获得无效的治疗,但却“预料”或“相
  • 梨是梨属(学名:Pyrus)植物的通称,通常是一种落叶乔木或灌木,极少数品种为常绿,属于蔷薇目蔷薇科苹果族。叶片多呈卵形,大小因品种不同而各异。花为白色,或略带黄色、粉红色,有五瓣。
  • 坎德勒县坎德勒县(Candler County)是位于美国佐治亚州东部的一个县,面积644平方公里,县治梅特。根据2000年美国人口普查,共有人口10,321。坎德勒县成立于1914年11月3日。历史 | 经济 |
  • 头索动物亚门头索动物亚门是脊索动物门的一个亚门。头索动物的脊索延伸到背神经管的前方,故名。其咽鳃裂众多。头索动物一般称为文昌鱼,故又名狭心纲及文昌鱼纲。因无真正的头部,又称为无头