广义相对论中的数学入门

✍ dations ◷ 2025-06-06 17:43:06 #广义相对论中的数学入门
广义相对论所使用的数学很复杂。牛顿的运动理论中,物体做加速度运动时,其长度和时间流逝的速率保持定值,这表示牛顿力学中的许多问题用代数就能解决。然而,相对论中的物体在运动速度接近光速时,长度和时间流逝的速率会有可观的改变,这表示要计算物体的运动必须用上更多变数和复杂的数学,如向量、张量、伪张量、曲线座标(英语:curvilinear coordinates)等概念。在数学、物理学及工程学中,欧几里得向量(有时也称为“几何向量”、“空间向量”,或单称“向量”)是同时有量值(长度)和方向的几何对象。一个向量将 A {displaystyle A} 点“搬运”至 B {displaystyle B} 点;向量的拉丁文“vector”意思为“搬运东西的东西”。向量的量值就是两点之间的距离,方向则为 A {displaystyle A} 到 B {displaystyle B} 的位移方向。很多实数的代数运算(英语:algebraic operation),像加、减、乘、逻辑非,和向量的运算很类似,运算也遵守相似的代数法则,如交换律、结合律、分配律。张量将向量的概念延伸至额外的维度。标量是没有方向的量,是单纯的数字,在图上以点来表示,是零维的物件。向量则有量值和方向,在图上以线呈现,是一维的物件。张量延伸了向量的概念,一个二维的张量称为二阶张量,可以看成一组相关的向量,在一个平面上的多个方向移动。向量在物理科学里很基础。他们可用来代表所有同时有量值和方向的量,例如速度。速度的量值为速率。举例而言,每秒五米向上的速度可以向量(0, 5)表示(在二维以 y {displaystyle y} 轴的正方向表示向上)。力的量也能以向量表示,因为它有量值和方向。向量也能描述很多其他的物理量,如位移、加速度、动量和角动量。其他物理向量,如电场和磁场,以物理空间中所有点的向量系统表示,也就是向量场。张量在物理中也有延伸应用:广义相对论需要用到四维向量,或称四向量。这四维为长、宽、高、时间。其中的“点”代表事件,因为它同时包含地点和时间。类似向量,相对论中的张量也需要四维。其中一个例子就是黎曼曲率张量。In physics, as well as mathematics, a vector is often identified with a tuple, or list of numbers, which depend on some auxiliary coordinate system or reference frame. When the coordinates are transformed, for example by rotation or stretching of the coordinate system, then the components of the vector also transform. The vector itself has not changed, but the reference frame has, so the components of the vector (or measurements taken with respect to the reference frame) must change to compensate.The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates.In Einstein notation, contravariant vectors and components of tensors are shown with superscripts, e.g. xi, and covariant vectors and components of tensors with subscripts, e.g. xi. Indices are "raised" or "lowered" by multiplication by an appropriate matrix, often the identity matrix.Coordinate transformation is important because relativity states that there is no one correct reference point in the universe. On earth, we use dimensions like north, east, and elevation, which are used throughout the entire planet. There is no such system for space. Without a clear reference grid, it becomes more accurate to describe the four dimensions as towards/away, left/right, up/down and past/future. As an example event, take the signing of the Declaration of Independence. To a modern observer on Mount Rainier looking east, the event is ahead, to the right, below, and in the past. However, to an observer in medieval England looking north, the event is behind, to the left, neither up nor down, and in the future. The event itself has not changed, the location of the observer has.An oblique coordinate system is one in which the axes are not necessarily orthogonal to each other; that is, they meet at angles other than right angles. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system.A nontensor is a tensor-like quantity that behaves like a tensor in the raising and lowering of indices, but that does not transform like a tensor under a coordinate transformation. For example, Christoffel symbols cannot be tensors themselves if the coordinates don't change in a linear way.In general relativity, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor(英语:Landau–Lifshitz pseudotensor).Curvilinear coordinates(英语:Curvilinear coordinates) are coordinates in which the angles between axes can change from point to point. This means that rather than having a grid of straight lines, the grid instead has curvature.A good example of this is the surface of the Earth. While maps frequently portray north, south, east and west as a simple square grid, that is not in fact the case. Instead, the longitude lines running north and south are curved and meet at the north pole. This is because the Earth is not flat, but instead round.In general relativity, gravity has curvature effects on the four dimensions of the universe. A common analogy is placing a heavy object on a stretched out rubber sheet, causing the sheet to bend downward. This curves the coordinate system around the object, much like an object in the universe curves the coordinate system it sits in. The mathematics here are conceptually more complex than on Earth, as it results in four dimensions of curved coordinates instead of three as used to describe a curved 2D surface.In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their temporal separation. The interval, s2, between two events is defined as:where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s2 above follows the space-like convention (−+++)(英语:sign convention#Relativity). A notation like Δr2 means (Δr)2. The reason s2 is called the interval and not s is that s2 can be positive, zero or negative.Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c2Δt2) or the spatial separation (Δr2) of the two events is greater: time-like, light-like or space-like.Certain types of world lines are called geodesics of the spacetime – straight lines in the case of Minkowski space and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points. The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, which takes as its inputs: (1) a vector, u, (along which the derivative is taken) defined at a point P, and (2) a vector field, v, defined in a neighborhood of P. The output is a vector, also at the point P. The primary difference from the usual directional derivative is that the covariant derivative must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.Given the covariant derivative, one can define the parallel transport of a vector v at a point P along a curve γ starting at P. For each point x of γ, the parallel transport of v at x will be a function of x, and can be written as v(x), where v(0) = v. The function v is determined by the requirement that the covariant derivative of v(x) along γ is 0. This is similar to the fact that a constant function is one whose derivative is constantly 0.The equation for the covariant derivative can be written in terms of Christoffel symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor is derived from the Riemann tensor, which can be written in terms of Christoffel symbols, a calculation of the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations(英语:solving the geodesic equations) in which the Christoffel symbols explicitly appear.In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime geometry around the star onto 3-dimensional space.A curve is a geodesic if the tangent vector(英语:tangent vector) of the curve at any point is equal to the parallel transport of the tangent vector(英语:tangent vector) of the base point.The Riemann tensor tells us, mathematically, how much curvature there is in any given region of space. Contracting the tensor produces 3 different mathematical objects:The Riemann curvature tensor can be expressed in terms of the covariant derivative.The Einstein tensor G is a rank-2 tensor defined over pseudo-Riemannian manifolds. In index-free notation it is defined aswhere R is the Ricci tensor, g is the metric tensor and R is the scalar curvature. It is used in the Einstein field equations.The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force field(英语:force field (physics))s. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy. First published by Einstein in 1915 as a tensor equation, the EFE equate local spacetime curvature (expressed by the Einstein tensor) with the local energy and momentum within that spacetime (expressed by the stress–energy tensor).The Einstein Field Equations can be written aswhere Gμν is the Einstein tensor and Tμν is the stress–energy tensor.This implies that the curvature of space (represented by the Einstein tensor) is directly connected to the presence of matter and energy (represented by the stress–energy tensor).In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, the angular momentum of the mass, and the universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. The solution is named after Karl Schwarzschild, who first published the solution in 1916.According to Birkhoff's theorem(英语:Birkhoff's theorem (relativity)), the Schwarzschild metric is the most general spherically symmetric(英语:rotational symmetry), vacuum solution(英语:Vacuum solution (general relativity)) of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has no charge or angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.

相关

  • 老人医学人体解剖学 - 人体生理学 组织学 - 胚胎学 人体寄生虫学 - 免疫学 病理学 - 病理生理学 细胞学 - 营养学 流行病学 - 药理学 - 毒理学老年医学(英语:Geriatrics)是医学的一个
  • 白色念珠菌白色念珠菌(学名:Candida albicans)是一种能造成伺机性感染的酵母菌,常见于人类消化道与泌尿生殖道的菌群,约有四成至六成健康成人的口腔与消化道中都有白色念珠菌,平时与人体行片
  • 索马里面积以下资讯是以2019年估计国家领袖国内生产总值(购买力平价) 以下资讯是以2010估计国内生产总值(国际汇率) 以下资讯是以2007年估计人类发展指数 以下资讯是以]]估计索马里联
  • 金花镇金花镇,是中华人民共和国四川省德阳市绵竹市下辖的一个乡镇级行政单位。2019年12月,撤销金花镇,将其所属行政区域划归广济镇管辖。金花镇下辖以下地区:金山村、三江村、玄郎村、
  • 易性癖性别不安(英语:gender dysphoria),又称性别焦虑、性别不一致,旧称性别认同障碍(英语:gender identity disorder)或易性症,是一个人因为出生时的性别指定而遭受的痛苦。在这种情况下,性
  • 十二指肠悬肌十二指肠悬肌(Musculus suspensorius duodeni),又称屈氏韧带(Ligament of Treitz)。为一连接十二指肠空肠曲(英语:duodenojejunal flexure)和上肠系膜动脉(英语:superior mesenteric a
  • 镇定剂镇静剂,也称作镇定剂(英语:Sedatives),是一个化学上的作用物,用作减少身体某一部分的机能或是活动,镇静剂有助于缓解人们的抑郁及焦虑;它们通常被用作治疗精神紧张的病者,镇静剂有利
  • 自由落体定律自由落体运动是指只受重力作用(不存在空气阻力的理想状态)的均匀加速度运动过程。运动过程中重力势能与动能之和遵守机械能守恒定律。在地球上相同位置与相同高度,自由落体的加
  • 木酮糖-5-磷酸D-木酮糖-5-磷酸(英语:D-Xylulose 5-phosphate)是一个磷酸戊糖途径中的中间代谢产物,由酮糖核酮糖-5-磷酸而来。最近的研究表明,此物质在基因表达中也有重要作用,主要与转录因子Ch
  • 与西班牙交战瑞典与神圣罗马帝国寻求赔款之后,法国首相黎塞留向西班牙宣战,因为法国领土被哈布斯堡王朝包围,成为法国称霸的最大障碍。这场冲突是法国对三十年战争的目标的延续,法军很快入侵